SLSA Specification

SLSA は、サプライ チェーンのセキュリティを記述し、段階的に改善するための仕様であり、業界の合意によって確立されています。これは、セキュリティ保証の強化を説明する一連のレベルに編成されています。

これは SLSA 仕様のversion 1.0 であり、SLSA レベルと、出所を含む推奨される認証形式を定義しています。

Understanding SLSA

These sections provide an overview of SLSA, how it helps protect against common supply chain attacks, and common use cases. If you’re new to SLSA or supply chain security, start here.

Section Description
What’s new in v1.0 What’s new in SLSA Version 1.0
About SLSA An introductory guide to SLSA
Supply chain threats An introduction to supply chain threats
Use cases Use cases
Guiding principles Use cases
FAQ Questions and more information
Future directions Additions and changes being considered for future SLSA versions

Core specification

These sections describe SLSA’s security levels and requirements for each track. If you want to achieve SLSA a particular level, these are the requirements you’ll need to meet.

Section Description
Terminology Terminology and model used by SLSA
Security levels Overview of SLSA’s tracks and levels, intended for all audiences
Producing artifacts Detailed technical requirements for producing software artifacts, intended for platform implementers
Distributing provenance Detailed technical requirements for distributing provenance, intended for platform implementers and software distributors
Verifying artifacts Guidance for verifying software artifacts and their SLSA provenance, intended for platform implementers and software consumers
Verifying build platforms Guidelines for securing SLSA Build L3+ builders, intended for platform implementers
Threats & mitigations Detailed information about specific supply chain attacks and how SLSA helps

Attestation formats

These sections include the concrete schemas for SLSA attestations. The Provenance and VSA formats are recommended, but not required by the specification.

Section Description
General model General attestation mode
Provenance Suggested provenance format and explanation
VSA Suggested VSA format and explanation

How to SLSA

These instructions tell you how to apply the core SLSA specification to use SLSA in your specific situation.

Section Description
For developers How to apply SLSA requirements to your build
For organizations How to apply SLSA to an organization
For infrastructure providers How to implement SLSA in source, build, and package platforms

What's new in SLSA v1.0

SLSA v1.0 is the first stable release of SLSA, creating a solid foundation on which future versions can expand. This document describes the major changes in v1.0 relative to the prior release, v0.1.

Summary of changes

SLSA v1.0 is a significant rework of the specification in response to ongoing feedback, filed issues, suggestions for course corrections, and other input from the SLSA community and early adopters. Overall, the changes prioritize simplicity, practicality, and stability.

Overall, SLSA v1.0 is more stable and better defined than v0.1, but less ambitious. It corresponds roughly to the build and provenance requirements of the prior version’s SLSA Levels 1 through 3, deferring SLSA Level 4 and the source and common requirements to a future version. The rationale is explained below.

Other significant changes:

Stability and scope

The v1.0 release marks the first stable version of SLSA. We are confident that the specification represents broad consensus and will not change significantly in the future. Having a stable foundation enables organizations and ecosystems to begin implementing and adopting SLSA with minimal risk of future breaking changes.

That said, some concepts from v0.1 had to be deferred to a future version in order to allow us to release v1.0 in a reasonable time frame. The deferred concepts—source requirements, hermetic builds (SLSA L4), and common requirements—were at significant risk of breaking changes in the future to address concerns from v0.1. We believed it was more valuable to release a small but stable base now while we work towards solidifying those concepts in a future version.

Going forward, we commit to a consistent versioning scheme based on semantic versioning. Backwards-incompatible changes will result in a major version increase (v2.0, v3.0, etc.); significant backwards-compatible changes will result in a minor version increase (v1.1, v1.2, etc.), while editorial changes may be made without a version increase.

For further explanation of the decisions behind v1.0, see the SLSA v1.0 Proposal.

Tracks

A significant conceptual change from v0.1 is the division of SLSA’s level requirements into multiple tracks. Previously, each SLSA level encompassed requirements across multiple software supply chain aspects: there were source, build, provenance, and common requirements. To reach a particular level, adopters needed to meet all requirements in each of the four areas. Organizing the specification in that way made adoption cumbersome, since requirements were split across unrelated domains—improvements in one area were not recognized until improvements were made in all areas.

Now, the requirements are divided into SLSA tracks that each focus on one area of the software supply chain. We anticipate this division will make SLSA adoption easier for users. Division into tracks also benefits the SLSA community: developers contributing to SLSA can parallelize work on multiple tracks without blocking each other, and members of the community can contribute specifically to their areas of expertise.

SLSA v1.0 defines the SLSA Build track to begin this separation of requirements, with other tracks to come in future versions. The new SLSA Build track Levels 1-3 roughly correspond to Levels 1-3 of v0.1, minus the source requirements. We anticipate future versions of the specification to continue building on requirements without changing the existing requirements defined in v1.0. The specification will likely expand to incorporate both new tracks and additional levels for existing tracks. We currently have plans for Build Level 4 and a Source track.

The v1.0 also defines the principles behind SLSA track requirements, which will guide future track additions. For more information about the rationale for tracks, see the proposal.

Improvements to core specification

We’ve simplified and reorganized the specification to make it easier to understand and apply. We’ve also split the requirements into multiple sections to better reflect the division of labor across the software supply chain: producing artifacts, distributing provenance, verifying artifacts, and verifying build platforms.

Terminology has been expanded to fully define all necessary concepts and to be consistent across the specification.

Security levels has been completely rewritten to provide a high level overview of the SLSA tracks and levels. Importantly, it explains the benefits provided by each level.

Producing artifacts explains requirements for the software producer and the build platform. While the requirements are largely the same as before—aside from those deferred to a future version—there are some minor changes to make SLSA easier to adopt. These changes include: renaming, simplifying, and merging some requirements; removing the redundant “scripted build” and “config as code” requirements; merging of the provenance requirements into the recommended provenance format; and splitting the requirements between those for the Producer and the Build platform.

Distributing provenance (new for v1.0) provides guidance to software producers and package ecosystems on how to distribute provenance alongside artifacts. We hope this brings consistency across open source package ecosystems as they adopt SLSA.

Verifying artifacts (new for v1.0) provides guidance to package ecosystems and consumers for how to verify provenance and compare it to expectations. It is discussed more in the following subsection.

Verifying build platforms (new for v1.0) provides a list of prompts for evaluating a build platform’s SLSA conformance. It covers similar ground as v0.1’s common requirements, but in a different form. It is also discussed in the following subsection.

Threats & mitigations has been updated for v1.0, filling out parts that were missing in v0.1. Note that labels D and E have swapped positions from v0.1 to align with the grouping of Source (A-C), Dependency (D), and Build (E-H) threats.

Verification

Another significant change in the v1.0 is documenting the need for provenance verification.

SLSA v0.1 specified guidance for how to produce provenance but not how to verify it. This left a large gap as most threats targeted by SLSA are only mitigated by verifying provenance and comparing it to expectations.

SLSA v1.0 addresses this gap by providing more explicit guidance on how to verify provenance. This is split between establishing trust in build platforms themselves versus establishing trust in artifacts produced by those build platforms. Build platforms implement the requirements around isolation and provenance generation, and consumers choose whether to trust those build platforms. Once that trust is established, consumers or package managers can verify artifacts by comparing the provenance to expectations for the package in question.

Ecosystems are already creating verification tooling, such as npm’s forthcoming SLSA support. Tooling for organizations that need to protect first-party software is also available, such as slsa-verifier.

Provenance and VSA formats

SLSA v1.0 simplifies SLSA’s build model and recommended provenance format to make it easier to understand and apply to arbitrary build platforms.

A major source of confusion for SLSA v0.1 was how to model a build and represent it in provenance. The v0.1 spec and v0.x provenance formats were overly rigid about a build’s inputs, differentiating between “source”, “build config”, “entry point”, and so on. Many implementers found that their build platforms did not clearly fit into this model, and the intent of each field was not clear. Furthermore, provenance requirements were described both abstractly in the SLSA specification and concretely in the provenance format, using different language. Implementers needed to jump back and forth and mentally map one concept to another.

SLSA v1.0 and the recommended provenance v1 format attempt to address this confusion by simplifying the model and aligning terminology between the two. The main change is to represent all “external parameters” that are exposed to the build platform’s users, instead of differentiating between various inputs. Now, you can represent arbitrary parameters, as long as it is possible to compare these parameters to expectations. Other parts of the provenance format were renamed, though most concepts translate from the old format to the new format. For a detailed list of changes, see provenance change history.

In addition, the recommended verification summary attestation (VSA) has been updated to v1.0.

About SLSA

This section is an introduction to SLSA and its concepts. If you’re new to SLSA, start here!

What is SLSA?

SLSA is a set of incrementally adoptable guidelines for supply chain security, established by industry consensus. The specification set by SLSA is useful for both software producers and consumers: producers can follow SLSA’s guidelines to make their software supply chain more secure, and consumers can use SLSA to make decisions about whether to trust a software package.

SLSA offers:

  • A common vocabulary to talk about software supply chain security
  • A way to secure your incoming supply chain by evaluating the trustworthiness of the artifacts you consume
  • An actionable checklist to improve your own software’s security
  • A way to measure your efforts toward compliance with forthcoming Executive Order standards in the Secure Software Development Framework (SSDF)

Why SLSA is needed

High profile attacks like those against SolarWinds or Codecov have exposed the kind of supply chain integrity weaknesses that may go unnoticed, yet quickly become very public, disruptive, and costly in today’s environment when exploited. They’ve also shown that there are inherent risks not just in code itself, but at multiple points in the complex process of getting that code into software systems—that is, in the software supply chain. Since these attacks are on the rise and show no sign of decreasing, a universal framework for hardening the software supply chain is needed, as affirmed by the U.S. Executive Order on Improving the Nation’s Cybersecurity.

Security techniques for vulnerability detection and analysis of source code are essential, but are not enough on their own. Even after fuzzing or vulnerability scanning is completed, changes to code can happen, whether unintentionally or from insider threats or compromised accounts. Risk for code modification exists at each link in a typical software supply chain, from source to build through packaging and distribution. Any weaknesses in the supply chain undermine confidence in whether the code that you run is actually the code that you scanned.

SLSA is designed to support automation that tracks code handling from source to binary, protecting against tampering regardless of the complexity of the software supply chain. As a result, SLSA increases trust that the analysis and review performed on source code can be assumed to still apply to the binary consumed after the build and distribution process.

SLSA in layperson’s terms

There has been a lot of discussion about the need for “ingredient labels” for software—a “software bill of materials” (SBOM) that tells users what is in their software. Building off this analogy, SLSA can be thought of as all the food safety handling guidelines that make an ingredient list credible. From standards for clean factory environments so contaminants aren’t introduced in packaging plants, to the requirement for tamper-proof seals on lids that ensure nobody changes the contents of items sitting on grocery store shelves, the entire food safety framework ensures that consumers can trust that the ingredient list matches what’s actually in the package they buy.

Likewise, the SLSA framework provides this trust with guidelines and tamper-resistant evidence for securing each step of the software production process. That means you know not only that nothing unexpected was added to the software product, but also that the ingredient label itself wasn’t tampered with and accurately reflects the software contents. In this way, SLSA helps protect against the risk of:

  • Code modification (by adding a tamper-evident “seal” to code after source control)
  • Uploaded artifacts that were not built by the expected CI/CD platform (by marking artifacts with a factory “stamp” that shows which build platform created it)
  • Threats against the build platform (by providing “manufacturing facility” best practices for build platform services)

For more exploration of this analogy, see the blog post SLSA + SBOM: Accelerating SBOM success with the help of SLSA.

Who is SLSA for?

In short: everyone involved in producing and consuming software, or providing infrastructure for software.

Software producers, such as an open source project, a software vendor, or a team writing first-party code for use within the same company. SLSA gives you protection against tampering along the supply chain to your consumers, both reducing insider risk and increasing confidence that the software you produce reaches your consumers as you intended.

Software consumers, such as a development team using open source packages, a government agency using vendored software, or a CISO judging organizational risk. SLSA gives you a way to judge the security practices of the software you rely on and be sure that what you receive is what you expected.

Infrastructure providers, who provide infrastructure such as an ecosystem package manager, build platform, or CI/CD platform. As the bridge between the producers and consumers, your adoption of SLSA enables a secure software supply chain between them.

How SLSA works

We talk about SLSA in terms of tracks and levels. A SLSA track focuses on a particular aspect of a supply chain, such as the Build Track. SLSA v1.0 consists of only a single track (Build), but future versions of SLSA will add tracks that cover other parts of the software supply chain, such as how source code is managed.

Within each track, ascending levels indicate increasingly hardened security practices. Higher levels provide better guarantees against supply chain threats, but come at higher implementation costs. Lower SLSA levels are designed to be easier to adopt, but with only modest security guarantees. SLSA 0 is sometimes used to refer to software that doesn’t yet meet any SLSA level. Currently, the SLSA Build Track encompasses Levels 1 through 3, but we envision higher levels to be possible in future revisions.

The combination of tracks and levels offers an easy way to discuss whether software meets a specific set of requirements. By referring to an artifact as meeting SLSA Build Level 3, for example, you’re indicating in one phrase that the software artifact was built following a set of security practices that industry leaders agree protect against particular supply chain compromises.

What SLSA doesn’t cover

SLSA is only one part of a thorough approach to supply chain security. There are several areas outside SLSA’s current framework that are nevertheless important to consider together with SLSA such as:

  • Code quality: SLSA does not tell you whether the developers writing the source code followed secure coding practices.
  • Producer trust: SLSA does not address organizations that intentionally produce malicious software, but it can reduce insider risks within an organization you trust. SLSA’s Build Track protects against tampering during or after the build, and future SLSA tracks intend to protect against unauthorized modifications of source code and dependencies.
  • Transitive trust for dependencies: the SLSA level of an artifact is independent of the level of its dependencies. You can use SLSA recursively to also judge an artifact’s dependencies on their own, but there is currently no single SLSA level that applies to both an artifact and its transitive dependencies together. For a more detailed explanation of why, see the FAQ.

Supply chain threats

Attacks can occur at every link in a typical software supply chain, and these kinds of attacks are increasingly public, disruptive, and costly in today’s environment.

This section is an introduction to possible attacks throughout the supply chain and how SLSA can help. For a more technical discussion, see Threats & mitigations.

Summary

Supply Chain Threats

See Terminology for an explanation of the supply chain model.

SLSA’s primary focus is supply chain integrity, with a secondary focus on availability. Integrity means protection against tampering or unauthorized modification at any stage of the software lifecycle. Within SLSA, we divide integrity into source integrity vs build integrity.

Source integrity: Ensure that all changes to the source code reflect the intent of the software producer. Intent of an organization is difficult to define, so SLSA approximates this as approval from two authorized representatives.

Build integrity: Ensure that the package is built from the correct, unmodified sources and dependencies according to the build recipe defined by the software producer, and that artifacts are not modified as they pass between development stages.

Availability: Ensure that the package can continue to be built and maintained in the future, and that all code and change history is available for investigations and incident response.

Real-world examples

Many recent high-profile attacks were consequences of supply chain integrity vulnerabilities, and could have been prevented by SLSA’s framework. For example:

Integrity threat Known example How SLSA can help
A Submit unauthorized change (to source repo) SushiSwap: Contractor with repository access pushed a malicious commit redirecting cryptocurrency to themself. Two-person review could have caught the unauthorized change.
B Compromise source repo PHP: Attacker compromised PHP's self-hosted git server and injected two malicious commits. A better-protected source code platform would have been a much harder target for the attackers.
C Build from modified source (not matching source repo) Webmin: Attacker modified the build infrastructure to use source files not matching source control. A SLSA-compliant build server would have produced provenance identifying the actual sources used, allowing consumers to detect such tampering.
D Use compromised dependency (i.e. A-H, recursively) event-stream: Attacker added an innocuous dependency and then later updated the dependency to add malicious behavior. The update did not match the code submitted to GitHub (i.e. attack F). Applying SLSA recursively to all dependencies would have prevented this particular vector, because the provenance would have indicated that it either wasn't built from a proper builder or that the source did not come from GitHub.
E Compromise build process SolarWinds: Attacker compromised the build platform and installed an implant that injected malicious behavior during each build. Higher SLSA levels require stronger security controls for the build platform, making it more difficult to compromise and gain persistence.
F Upload modified package (not matching build process) CodeCov: Attacker used leaked credentials to upload a malicious artifact to a GCS bucket, from which users download directly. Provenance of the artifact in the GCS bucket would have shown that the artifact was not built in the expected manner from the expected source repo.
G Compromise package repo Attacks on Package Mirrors: Researcher ran mirrors for several popular package repositories, which could have been used to serve malicious packages. Similar to above (F), provenance of the malicious artifacts would have shown that they were not built as expected or from the expected source repo.
H Use compromised package Browserify typosquatting: Attacker uploaded a malicious package with a similar name as the original. SLSA does not directly address this threat, but provenance linking back to source control can enable and enhance other solutions.
Availability threat Known example How SLSA can help
D Dependency becomes unavailable Mimemagic: Producer intentionally removes package or version of package from repository with no warning. Network errors or service outages may also make packages unavailable temporarily. SLSA does not directly address this threat.

A SLSA level helps give consumers confidence that software has not been tampered with and can be securely traced back to source—something that is difficult, if not impossible, to do with most software today.

Use cases

SLSA protects against tampering during the software supply chain, but how? The answer depends on the use case in which SLSA is applied. Below describe the three main use cases for SLSA.

Applications of SLSA

First party

In its simplest form, SLSA can be used entirely within an organization to reduce risk from internal sources. This is the easiest case in which to apply SLSA because there is no need to transfer trust across organizational boundaries.

Example ways an organization might use SLSA internally:

  • A small company or team uses SLSA to ensure that the code being deployed to production in binary form is the same one that was tested and reviewed in source form.
  • A large company uses SLSA to require two person review for every production change, scalably across hundreds or thousands of employees/teams.
  • An open source project uses SLSA to ensure that compromised credentials cannot be abused to release an unofficial package to a package repostory.

Case study: Google (Binary Authorization for Borg)

Open source

SLSA can also be used to reduce risk for consumers of open source software. The focus here is to map built packages back to their canonical sources and dependencies. In this way, consumers need only trust a small number of secure build platforms rather than the many thousands of developers with upload permissions across various packages.

Example ways an open source ecosystem might use SLSA to protect users:

  • At upload time, the package registry rejects the package if it was not built from the canonical source repository.
  • At download time, the packaging client rejects the package if it was not built by a trusted builder.

Case study: SUSE

Vendors

Finally, SLSA can be used to reduce risk for consumers of vendor provided software and services. Unlike open source, there is no canonical source repository to map to, so instead the focus is on trustworthiness of claims made by the vendor.

Example ways a consumer might use SLSA for vendor provided software:

  • Prefer vendors who make SLSA claims and back them up with credible evidence.
  • Require a vendor to implement SLSA as part of a contract.
  • Require a vendor to be SLSA certified from a trusted third-party auditor.

Motivating example

For a look at how SLSA might be applied to open source in the future, see the hypothetical curl example.

Guiding principles

This section is an introduction to the guiding principles behind SLSA’s design decisions.

Trust platforms, verify artifacts

Establish trust in a small number of platforms and systems—such as change management, build, and packaging platforms—and then automatically verify the many artifacts produced by those platforms.

Reasoning: Trusted computing bases are unavoidable—there’s no choice but to trust some platforms. Hardening and verifying platforms is difficult and expensive manual work, and each trusted platform expands the attack surface of the supply chain. Verifying that an artifact is produced by a trusted platform, though, is easy to automate.

To simultaneously scale and reduce attack surfaces, it is most efficient to trust a limited numbers of platforms and then automate verification of the artifacts produced by those platforms. The attack surface and work to establish trust does not scale with the number of artifacts produced, as happens when artifacts each use a different trusted platform.

Benefits: Allows SLSA to scale to entire ecosystems or organizations with a near-constant amount of central work.

Example

A security engineer analyzes the architecture and implementation of a build platform to ensure that it meets the SLSA Build Track requirements. Following the analysis, the public keys used by the build platform to sign provenance are “trusted” up to the given SLSA level. Downstream platforms verify the provenance signed by the public key to automatically determine that an artifact meets the SLSA level.

Corollary: Minimize the number of trusted platforms

A corollary to this principle is to minimize the size of the trusted computing base. Every platform we trust adds attack surface and increases the need for manual security analysis. Where possible:

  • Concentrate trust in shared infrastructure. For example, instead of each team within an organization maintaining their own build platform, use a shared build platform. Hardening work can be shared across all teams.
  • Remove the need to trust components. For example, use end-to-end signing to avoid the need to trust intermediate distribution platforms.

Trust code, not individuals

Securely trace all software back to source code rather than trust individuals who have write access to package registries.

Reasoning: Code is static and analyzable. People, on the other hand, are prone to mistakes, credential compromise, and sometimes malicious action.

Benefits: Removes the possibility for a trusted individual—or an attacker abusing compromised credentials—to tamper with source code after it has been committed.

Prefer attestations over inferences

Require explicit attestations about an artifact’s provenance; do not infer security properties from a platform’s configurations.

Reasoning: Theoretically, access control can be configured so that the only path from source to release is through the official channels: the CI/CD platform pulls only from the proper source, package registry allows access only to the CI/CD platform, and so on. We might infer that we can trust artifacts produced by these platforms based on the platform’s configuration.

In practice, though, these configurations are almost impossible to get right and keep right. There are often over-provisioning, confused deputy problems, or mistakes. Even if a platform is configured properly at one moment, it might not stay that way, and humans almost always end up getting in the access control lists.

Access control is still important, but SLSA goes further to provide defense in depth: it requires proof in the form of attestations that the package was built correctly.

Benefits: The attestation removes intermediate platforms from the trust base and ensures that individuals who are accidentally granted access do not have sufficient permission to tamper with the package.

Frequently asked questions

Q: Why is SLSA not transitive?

SLSA Build levels only cover the trustworthiness of a single build, with no requirements about the build levels of transitive dependencies. The reason for this is to make the problem tractable. If a SLSA Build level required dependencies to be the same level, then reaching a level would require starting at the very beginning of the supply chain and working forward. This is backwards, forcing us to work on the least risky component first and blocking any progress further downstream. By making each artifact’s SLSA rating independent from one another, it allows parallel progress and prioritization based on risk. (This is a lesson we learned when deploying other security controls at scale throughout Google.) We expect SLSA ratings to be composed to describe a supply chain’s overall security stance, as described in the case study vision.

Q: What about reproducible builds?

When talking about reproducible builds, there are two related but distinct concepts: “reproducible” and “verified reproducible.”

“Reproducible” means that repeating the build with the same inputs results in bit-for-bit identical output. This property provides many benefits, including easier debugging, more confident cherry-pick releases, better build caching and storage efficiency, and accurate dependency tracking.

“Verified reproducible” means using two or more independent build platforms to corroborate the provenance of a build. In this way, one can create an overall platform that is more trustworthy than any of the individual components. This is often suggested as a solution to supply chain integrity. Indeed, this is one option to secure build steps of a supply chain. When designed correctly, such a platform can satisfy all of the SLSA Build level requirements.

That said, verified reproducible builds are not a complete solution to supply chain integrity, nor are they practical in all cases:

  • Reproducible builds do not address source, dependency, or distribution threats.
  • Reproducers must truly be independent, lest they all be susceptible to the same attack. For example, if all rebuilders run the same pipeline software, and that software has a vulnerability that can be triggered by sending a build request, then an attacker can compromise all rebuilders, violating the assumption above.
  • Some builds cannot easily be made reproducible, as noted above.
  • Closed-source reproducible builds require the code owner to either grant source access to multiple independent rebuilders, which is unacceptable in many cases, or develop multiple, independent in-house rebuilders, which is likely prohibitively expensive.

Therefore, SLSA does not require verified reproducible builds directly. Instead, verified reproducible builds are one option for implementing the requirements.

For more on reproducibility, see Hermetic, Reproducible, or Verifiable?

Q: How does SLSA relate to in-toto?

in-toto is a framework to secure software supply chains hosted at the Cloud Native Computing Foundation. The in-toto specification provides a generalized workflow to secure different steps in a software supply chain. The SLSA specification recommends in-toto attestations as the vehicle to express Provenance and other attributes of software supply chains. Thus, in-toto can be thought of as the unopinionated layer to express information pertaining to a software supply chain, and SLSA as the opinionated layer specifying exactly what information must be captured in in-toto metadata to achieve the guarantees of a particular level.

in-toto’s official implementations written in Go, Java, and Rust include support for generating SLSA Provenance metadata. These APIs are used in other tools generating SLSA Provenance such as Sigstore’s cosign, the SLSA GitHub Generator, and the in-toto Jenkins plugin.

Q. What is the difference between a build platform, system, and service?

Build platform and build system have been used interchangably in the past. With the v1.0 specification, however, there has been a unification around the term platform as indicated in the Terminology. The use of the word system still exists related to software and services within the build platform and to systems outside of a build platform like change management systems.

A build service is a hosted build platform that is often run on shared infrastructure instead of individuals’ machines and workstations. Its use has also been replaced outside of the requirements as it relates to the build platform.

Q: Is SLSA the same as TACOS?

No. Trusted Attestation and Compliance for Open Source (TACOS) is a framework authored by Tidelift. Per their website, TACOS is a framework “for assessing the development practices of open source projects against a set of secure development standards specified by the (US) NIST Secure Software Development Framework (SSDF) V1.1” which “vendors can use to provide self-attestation for the open source components they rely on.”

In contrast, SLSA is a community-developed framework—including adoptable guidelines for securing a software supply chain and mechanism to evaluate the trustworthiness of artifacts you consume—that is part of the Open Source Security Foundation (OpenSSF).

Q: How does SLSA and SLSA Provenance relate to SBOM?

Software Bill of Materials (SBOM) are a frequently recommended tool for increased software supply chain rigor. An SBOM is typically focused on understanding software in order to evaluate risk through known vulnerabilities and license compliance. These use-cases require fine-grained and timely data which can be refined to improve signal-to-noise ratio.

SLSA Provenance and the Build track are focused on trustworthiness of the build process. To improve trustworthiness, Provenance is generated in the build platform’s trusted control plane, which in practice results in it being coarse grained. For example, in Provenance metadata completeness of resolvedDependencies information is on a best-effort basis. Further, the ResourceDescriptor type does not require version and license information or even a URI to the dependency’s original location.

While they likely include similar data, SBOMs and SLSA Provenance operate at different levels of abstraction. The fine-grained data in an SBOM typically describes the components present in a produced artifact, whereas SLSA Provenance more coarsely describes parameters of a build which are external to the build platform.

The granularity and expressiveness of the two use-cases differs enough that current SBOM formats were deemed not a good fit for the requirements of the Build track. Yet SBOMs are a good practice and may form part of a future SLSA Vulnerabilities track. Further, SLSA Provenance can increase the trustworthiness of an SBOM by describing how the SBOM was created.

SLSA Provenance, the wider in-toto Attestation Framework in which the recommended format sits, and the various SBOM standards, are all rapidly evolving spaces. There is ongoing investigation into linking between the different formats and exploration of alignment on common models. This FAQ entry describes our understanding of the intersection efforts today. We do not know how things will evolve over the coming months and years, but we look forward to the collaboration and improved software supply chain security.

Future directions

The initial draft version (v0.1) of SLSA had a larger scope including protections against tampering with source code and a higher level of build integrity (Build L4). This section collects some early thoughts on how SLSA might evolve in future versions to re-introduce those notions and add other additional aspects of automatable supply chain security.

Build track

Build L4

A build L4 could include further hardening of the build platform and enabling corraboration of the provenance, for example by providing complete knowledge of the build inputs.

The initial draft version (v0.1) of SLSA defined a “SLSA 4” that included the following requirements, which may or may not be part of a future Build L4:

  • Pinned dependencies, which guarantee that each build runs on exactly the same set of inputs.
  • Hermetic builds, which guarantee that no extraneous dependencies are used.
  • All dependencies listed in the provenance, which enables downstream verifiers to recursively apply SLSA to dependencies.
  • Reproducible builds, which enable other build platforms to corroborate the provenance.

Source track

A Source track could provide protection against tampering of the source code prior to the build.

The initial draft version (v0.1) of SLSA included the following source requirements, which may or may not form the basis for a future Source track:

  • Strong authentication of author and reviewer identities, such as 2-factor authentication using a hardware security key, to resist account and credential compromise.
  • Retention of the source code to allow for after-the-fact inspection and future rebuilds.
  • Mandatory two-person review of all changes to the source to prevent a single compromised actor or account from introducing malicious changes.

Build Platform Operations track

A Build Platform Operations track could provide assurances around the hardening of build platforms as they are operated.

The initial draft version (v0.1) of SLSA included a subsection on common requirements that formed the foundation of the guidance for verifying build systems, which may or may not form the basis for a future Build Platform Operations track:

  • Controls for approval, logging, and auditing of all physical and remote access to platform infrastructure, cryptographic secrets, and privileged debugging interfaces.
  • Conformance to security best practices to minimize the risk of compromise.
  • Protection of cryptographic secrets used by the build platform.

用語

SLSA レベル に入る前に、何を保護しているのかを説明するための用語とモデルの中核セットを確立する必要があります。

ソフトウェア サプライ チェーン

SLSA のフレームワークは、ソフトウェア サプライ チェーンのあらゆるステップ、つまり成果物の作成につながる一連のステップに対応します。サプライ チェーンをソース、ビルド、依存関係、パッケージの [有向非循環グラフ] として表します。1 つのアーティファクトのサプライ チェーンは、その依存関係のサプライ チェーンに独自のソースとビルドを加えたものです。

ソフトウェア サプライ チェーン モデル

用語 説明
アーティファクト 不変のデータの塊。主にソフトウェアを指しますが、SLSA はあらゆるアーティファクトに使用できます。 ファイル、git コミット、ファイルのディレクトリ (何らかの方法でシリアル化された)、コンテナー イメージ、ファームウェア イメージ。
証明書 ソフトウェア アーティファクトまたはソフトウェア アーティファクトのコレクションに関する認証されたステートメント (メタデータ)。 署名された SLSA Provenance ファイル。
出典 変更を加えることなく、人によって直接作成またはレビューされた成果物。それはサプライチェーンの始まりです。これ以上出所を遡ることはしません。 GitHub (プラットフォーム) でホストされている Git コミット (ソース)。
ビルド 一連の入力成果物を一連の出力成果物に変換するプロセス。入力は、ソース、依存関係、または一時的なビルド出力である場合があります。 .travis.yml (プロセス) Travis CI (プラットフォーム) によって実行されます。
パッケージ 他人が使用するために「公開」されたアーティファクト。モデルでは、これは常にビルド プロセスの出力ですが、ビルド プロセスが何も行われない場合もあります。 DockerHub(プラットフォーム)上で配布されるDockerイメージ(パッケージ)。ソース コードを含む ZIP ファイルは、git コミットなどの他のソースからビルドされるため、ソースではなくパッケージです。
依存関係 ビルド プロセスへの入力ではあるが、ソースではないアーティファクト。モデルでは、それは常にパッケージです。 Alpine Linux (プラットフォーム) 上で配布される Alpine パッケージ (パッケージ)。

役割

仕様全体を通じて、ソフトウェア サプライ チェーンに参加する次の役割への言及が見られます。実際には、役割は複数の個人または組織によって満たされる場合があることに注意してください。同様に、個人または組織は、特定のソフトウェア サプライ チェーン内で複数の役割を担う場合があります。

役割 説明
プロデューサー ソフトウェアを作成し、他者に提供する者。生産者は消費者でもあることがよくあります。 オープンソース プロジェクトのメンテナ。ソフトウェアベンダー。
検証者 アーティファクトの出所を検査して、アーティファクトの信頼性を判断する当事者。 企業のソフトウェア取り込みシステム。プログラミング言語エコシステムのパッケージ レジストリ。
消費者 製作者が提供するソフトウェアを使用する当事者。消費者は、消費するソフトウェアの出所を検証することも、その責任を別の検証者に委任することもできます。 オープンソース ソフトウェア ディストリビューションを使用する開発者。POSシステムを利用したビジネス。
インフラプロバイダー 他の役割にソフトウェアまたはサービスを提供する当事者。 パッケージ レジストリのメンテナ。ビルド プラットフォームのメンテナ。

モデルの構築

モデル ビルド

ビルドは、各実行が独立したマルチテナント ビルド プラットフォーム 上で実行されるものとしてモデル化されます。

  1. テナントは、直接または何らかのトリガーを介して インターフェイス を介して 外部パラメーター を指定することにより、ビルドを呼び出します。通常、これらの外部パラメータの少なくとも 1 つは 依存関係 への参照です。(外部パラメーターはリテラル値ですが、依存関係は成果物です。)
  2. ビルド プラットフォームの コントロール プレーン は、これらの外部パラメーターを解釈し、依存関係の初期セットをフェッチし、ビルド環境 を初期化し、その環境内で実行を開始します。
  3. その後、ビルドは追加の依存関係の取得などの任意の手順を実行し、1 つ以上の 出力 アーティファクトを生成します。ビルド環境内のステップはテナントの制御下にあります。ビルド プラットフォームは、ビルド環境を互いにある程度分離します (これは SLSA ビルド レベルによって測定されます)。
  4. 最後に、SLSA Build L2+ の場合、コントロール プレーンはこのプロセス全体を説明する 来歴 を出力します。

特に、ビルド モデルには「ソース」という正式な概念はなく、外部パラメーターと依存関係だけが存在します。ほとんどのビルド プラットフォームには、ビルド元となる明示的な「ソース」アーティファクトがあり、これは多くの場合 git リポジトリです。ビルド モデルでは、このアーティファクトへの参照は外部パラメーターですが、アーティファクト自体は依存関係です。

このモデルが実際のビルド プラットフォームにどのように適用されるかの例については、ビルド タイプのインデックス を参照してください。

初等用語 説明
プラットフォーム テナントがビルドを実行できるシステム。技術的には、ビルドを忠実に実行するには信頼する必要があるソフトウェアとサービスの推移的クロージャです。これには、ソフトウェア、ハードウェア、人、組織が含まれます。
管理者 プラットフォームへの管理アクセス権を持つ特権ユーザー。ビルドやコントロール プレーンの改ざんを許可される可能性があります。
テナント プラットフォーム上にアーティファクトを構築する信頼できないユーザー。テナントはビルドステップと外部パラメータを定義します。
コントロールプレーン それぞれの独立したビルド実行を調整し、来歴を生成するビルド プラットフォーム コンポーネント。コントロール プレーンは管理者によって管理され、テナントの制御外にあると信頼されています。
ビルド 入力ソースと依存関係を出力アーティファクトに変換するプロセス。テナントによって定義され、プラットフォーム上の単一のビルド環境内で実行されます。
ステップ テナントによって定義された、ビルドを構成する一連のアクション。
構築環境 ビルドが実行される独立した実行コンテキスト。コントロール プレーンによって初期化されます。分散ビルドの場合、これはステップを実行するすべてのマシン/コンテナ/VM のコレクションです。
キャッシュを構築する プラットフォームによって管理される中間アーティファクト ストレージ。中間アーティファクトを明示的な入力にマッピングします。ビルドは、プラットフォーム上で実行されている後続のビルドとビルド キャッシュを共有する場合があります。
外部パラメータ ビルドへのトップレベルの独立した入力のセット。テナントによって指定され、ビルドを初期化するためにコントロール プレーンによって使用されます。
依存関係 構成ファイル、ソースアーティファクト、ビルドツールなど、ビルドプロセスの初期化または実行中にフェッチされたアーティファクト。
出力 ビルドによって生成されたアーティファクトのコレクション。
来歴 プラットフォームと外部パラメータの識別を含む、出力がどのように生成されたかを説明する証明書 (メタデータ)。
避けるべきあいまいな用語
  • ビルド レシピ: 外部パラメーター を意味する可能性がありますが、ビルドを実行する方法の具体的な手順が含まれる場合があります。実装の詳細を避けるため、この用語は定義しませんが、ビルド プラットフォームへのインターフェイスである「外部パラメータ」を常に使用します。同様の用語として、ビルド構成ソース および ビルド定義 があります。
  • Builder: 通常は ビルド プラットフォーム を意味しますが、ビルド環境、ビルドを呼び出したユーザー、または 依存関係 からのビルド ツールに使用される場合もあります。混乱を避けるために、私たちは常に「プラットフォームの構築」を使用します。唯一の例外は provenance です。ここでは、builder がより簡潔なフィールド名として使用されます。

パッケージモデル

ソフトウェアは、パッケージ エコシステムのルールと規約に従って、パッケージと呼ばれる識別可能な単位で配布されます。正式なエコシステムの例には、Python/PyPADebian/Apt、[OCI](https: //github.com/opencontainers/distribution-spec)、非公式エコシステムの例には、Web サイト上のファイルへのリンクや企業内でのファーストパーティ ソフトウェアの配布などが含まれます。

抽象的には、消費者は、パッケージ レジストリに変更可能な パッケージ名を不変のパッケージ アーティファクトに解決するように依頼することにより、エコシステム内のソフトウェアを見つけます。1 ] パッケージ アーティファクトを公開するには、ソフトウェア プロデューサーはレジストリにこのマッピングを更新して新しいアーティファクトに解決するように要求します。レジストリは、特定のパッケージ名に対して消費者が受け入れるアーティファクトを変更する権限を持つエンティティを表します。たとえば、消費者が特定の公開キーで署名されたパッケージのみを受け入れる場合、レジストリとして機能するのはその公開キーへのアクセスです。

パッケージ名は、パッケージ エコシステム内の主要なセキュリティ境界です。異なるパッケージ名は、実質的に異なるソフトウェア部分、つまり異なる所有者、動作、セキュリティ特性などを表します。したがって、パッケージ名は SLSA で保護されるプライマリ ユニットです。これは、消費者が期待する主な識別子です。

用語 説明
パッケージ 配布を目的としたソフトウェアの識別可能な単位。「成果物」または「パッケージ名」のいずれかを曖昧に意味します。この用語は、曖昧さが許容されるか望ましい場合にのみ使用してください。
パッケージアーティファクト 配布を目的としたファイルまたはその他の不変オブジェクト。
パッケージエコシステム クライアントがパッケージ名を 1 つ以上の特定のアーティファクトに解決する方法など、パッケージの配布方法を管理する一連の規則と規則。
パッケージマネージャークライアント パッケージ エコシステムと対話するためのクライアント側ツール。
パッケージ名

同じソフトウェアの異なるバージョンをすべて表す、変更可能なアーティファクトのコレクションの主な識別子。これは、消費者がソフトウェアを入手するために使用する主な識別子です。

パッケージ名はエコシステム + レジストリに固有であり、メンテナーがあり、特定のハッシュやバージョンよりも一般的で、「正しい」ソースの場所があります。パッケージ エコシステムでは、パッケージ名を Maven のグループ ID などの何らかの階層にグループ化する場合がありますが、SLSA にはこれを表す特別な用語がありません。

パッケージレジストリ パッケージング エコシステム内のアーティファクトにパッケージ名をマッピングする責任を負うエンティティ。ほとんどのエコシステムは複数のレジストリ (通常は 1 つのグローバル レジストリと複数のプライベート レジストリ) をサポートします。
パッケージ を発行する アーティファクトをパッケージ レジストリに登録して、アーティファクトを使用できるようにします。技術用語では、これはアーティファクトをパッケージ名に関連付けることを意味します。これは必ずしもアーティファクトを完全に公開することを意味するわけではありません。アーティファクトは、内部テストやクローズド ベータなど、一部のユーザーに対してのみ公開される場合があります。
避けるべきあいまいな用語
  • パッケージ リポジトリ: エコシステムに応じて、パッケージ レジストリまたはパッケージ名のいずれかを意味します。混乱を避けるために、曖昧さがない限り、常に「ソース リポジトリ」を意味するためにのみ「リポジトリ」を使用します。
  • パッケージ マネージャー (「クライアント」なし): パッケージ エコシステム、パッケージ レジストリ、またはクライアント側ツールのいずれかを意味します。

現実世界のエコシステムへのマッピング

現実世界のほとんどのエコシステムは上記のパッケージ モデルに適合しますが、異なる用語を使用します。以下の表は、さまざまなエコシステムが SLSA パッケージ モデルにどのようにマッピングされるかを文書化しようとしています。間違いや省略がある可能性があります。修正や追加も大歓迎です!

言語 オペレーティング システム
パッケージエコシステム パッケージレジストリ パッケージ名 パッケージアーティファクト
Cargo (Rust) Registry Crate name Artifact
CPAN (Perl) Upload server Distribution Release (or Distribution)
Go Module proxy Module path Module
Maven (Java) Repository Group ID + Artifact ID Artifact
npm (JavaScript) Registry Package Name Package
NuGet (C#) Host Project Package
PyPA (Python) Index Project Name Distribution
Dpkg (e.g. Debian) ? Package name Package
Flatpak Repository Application Bundle
Homebrew (e.g. Mac) Repository (Tap) Package name (Formula) Binary package (Bottle)
Pacman (e.g. Arch) Repository Package name Package
RPM (e.g. Red Hat) Repository Package name Package
nix (e.g. NixOS) ? Store Object? Package or Derivation
ストレージ システム
GCS n/a Object name Object
OCI/Docker Registry Repository Object
Meta
deps.dev: System Packaging authority Package n/a
purl: type Namespace Name n/a

ノート:

  • Go は、他のエコシステムとは大きく異なる配布モデルを使用します。go では、パッケージ名はソース リポジトリ URL です。クライアントはその URL から直接フェッチすることもできますが (この場合、「パッケージ」や「レジストリ」はありません)、通常は モジュール プロキシ から zip ファイルをフェッチします。モジュール プロキシは、ビルダー (ソースからパッケージ アーティファクトを構築することによって) とレジストリ (パッケージ名をパッケージ アーティファクトにマッピングすることによって) の両方として機能します。ビルドは独立して再現可能であり、チェックサム データベース により、すべてのクライアントが特定の URL に対して同じアーティファクトを受け取ることが保証されるため、人々はモジュール プロキシを信頼します。

検証モデル

SLSA での検証は 2 つの方法で実行されます。まず、ビルド プラットフォームは、ビルド プラットフォームが要求するレベルでの要件への準拠を保証するために認定されます。この認定は、ユーザーがレビューし、どのビルダーを信頼するかについて情報に基づいた決定を下せるように、プラットフォーム オペレーターによって公開される結果とともに定期的に行われる必要があります。

次に、アーティファクトが検証され、パッケージのソース コードがどこから取得され、どのビルド プラットフォームでパッケージがビルドされたかについて、プロデューサーが定義した期待を満たしていることが確認されます。

検証モデル

用語 説明
期待 パッケージの出所メタデータに対する一連の制約。パッケージプロデューサーは、明示的または暗黙的に、パッケージに対する期待を設定します。
出所の検証 アーティファクトは、パッケージが使用される前にパッケージの期待が満たされていることを確認するために、パッケージ エコシステムによって検証されます。
ビルドプラットフォーム認定 ビルド プラットフォームは、指定されたレベルで SLSA 要件に準拠していることが認定されています

以下の例は、さまざまな広義のパッケージ エコシステムに対して期待と検証を実装できるいくつかの方法を示しています。

例: 小規模なソフトウェア チーム
用語
期待 プロデューサーのセキュリティ担当者によって定義され、データベースに保存されます。
出所の検証 実行前に期待値データベースにクエリを実行することにより、クラスター ノード上で自動的に実行されます。
ビルドプラットフォーム認定 ビルド プラットフォームの実装者は、安全な設計と開発のベスト プラクティスに従い、毎年侵入テストを実施し、SLSA 要件への適合性を自己認証します。
例: オープンソース言語の配布
用語
期待 パッケージごとに個別に定義され、パッケージ レジストリに保存されます。
出所の検証 言語配布レジストリは、新しくアップロードされたパッケージが公開前に期待を満たしていることを検証します。さらに、パッケージ マネージャー クライアントは、パッケージをインストールする前に期待値も検証します。
ビルドプラットフォーム認定 言語エコシステムのパッケージ化当局によって実行されます。

セキュリティ レベル

SLSA は、サプライ チェーンのセキュリティ保証を強化する一連のレベルに編成されています。これにより、ソフトウェアが改ざんされておらず、ソースまで安全に追跡できるという確信が得られます。

このページは、SLSA レベルとトラックの概要を説明し、その意図を説明します。各レベルの規範的な要件については、要件を参照してください。SLSA の概要については、SLSA について を参照してください。

レベルとトラック

SLSA レベルは トラック に分割されます。各トラックには、サプライ チェーンのセキュリティの特定の側面を測定する独自のレベルのセットがあります。トラックの目的は、無関係な側面をブロックすることなく、セキュリティの 1 つの側面での進歩を認識することです。トラックを使用すると、SLSA 仕様を進化させることもできます。以前のレベルを無効にすることなく、トラックを追加できます。

トラック/レベル 要件 フォーカス
Build L0 (none) (n/a)
Build L1 パッケージがどのように構築されたかを示す来歴 間違い、ドキュメント
Build L2 ホストされたビルド プラットフォームによって生成された署名付きの来歴 ビルド後の改ざん
Build L3 強化されたビルド プラットフォーム ビルド中の改ざん

注: 仕様の 以前のバージョン では、単一の名前のないトラック、SLSA 1 ~ 4 が使用されていました。バージョン 1.0 では、ビルド トラックに重点を置くためにソース アスペクトが削除されました。将来のバージョン ではソース トラックが追加される可能性があります。

ビルド トラック

SLSA ビルド トラックは、パッケージ アーティファクトの 来歴 における信頼性と完全性のレベルの向上を説明します。来歴は、どのエンティティがアーティファクトを構築したか、どのようなプロセスを使用したか、および入力が何であったかを説明します。最低レベルでは来歴が存在することのみが必要ですが、より高いレベルでは、ビルド、来歴、またはアーティファクトの改ざんに対する保護が強化されます。

ビルド トラックの主な目的は、アーティファクトが期待どおりにビルドされたことを 検証 できるようにすることです。消費者は、特定のパッケージについて予想される来歴がどのようになるかを知る何らかの方法を持っており、各パッケージ成果物の実際の来歴をそれらの期待と比較します。そうすることで、いくつかのクラスの サプライ チェーンの脅威 を防ぐことができます。

各エコシステム (オープン ソースの場合) または組織 (クローズ ソースの場合) は、これがどのように実装されるかを正確に定義します。これには、期待値を定義する手段、どのような来歴形式が受け入れられるか、再現可能なビルドが使用されるかどうか、来歴がどのように配布されるか、いつ検証が行われるかなどが含まれます。失敗すると何が起こるか。実装者向けのガイドラインは、requirements にあります。

Build L0: 保証なし

概要

要件なし —L0 は SLSA がないことを表します。

対象

単体テストなど、同じマシン上で構築および実行されるソフトウェアの開発またはテスト ビルド。

要件

該当なし

利点

該当なし

Build L1: 来歴が存在します

概要

パッケージには、それがどのように構築されたかを示す来歴があります。間違いを防ぐために使用できますが、回避したり偽造したりするのは簡単です。

対象

ビルド ワークフローを変更せずに、改ざん防止以外の SLSA の利点を簡単かつ迅速に得たいと考えているプロジェクトや組織。

要件
  • ソフトウェア プロデューサーは、他の人が「正しい」ビルドがどのようなものであるかについての期待を形成できるように、一貫したビルド プロセスに従います。

  • ビルド プラットフォームは、アーティファクトがどのようにビルドされたかを説明する 来歴 を自動的に生成します。これには、どのエンティティがパッケージをビルドしたか、使用したビルド プロセス、ビルドへのトップレベルの入力が何であったかが含まれます。

  • ソフトウェア制作者は、できればパッケージ エコシステムによって決定された規則を使用して、消費者に来歴を配布します。

メリット
  • 正確なソース バージョンとビルド プロセスを知ることで、プロデューサーとコンシューマーの両方がソフトウェアのデバッグ、パッチ、再構築、分析を容易にします。

  • 検証 を使用すると、上流リポジトリに存在しないコミットからビルドするなど、リリース プロセス中のミスを防ぐことができます。

  • 組織がソフトウェアのインベントリを作成し、さまざまなチームで使用されるプラットフォームを構築するのを支援します。

メモ
  • 来歴が不完全であるか、L1 で署名されていない可能性があります。より高いレベルでは、より完全で信頼できる来歴が必要になります。

Build L2: ホスト型ビルド プラットフォーム

概要

来歴を偽造したり、検証を回避したりするには、明示的な「攻撃」が必要ですが、これは簡単に実行できる場合もあります。洗練されていない敵や、法的リスクや経済的リスクに直面している敵を阻止します。

実際には、これは、来歴を生成して署名1するホストされたプラットフォーム上でビルドが実行されることを意味します。

対象

Build L3 で必要なビルド プラットフォーム自体の変更を待ちながら、ホスト型ビルド プラットフォームに切り替えることで SLSA による適度なセキュリティ上のメリットを得たいと考えているプロジェクトおよび組織。

要件

Build L1 のすべてに加えて:

  • ビルドは、来歴自体を生成して署名1するホストされたビルド プラットフォーム上で実行されます。これは、オリジナルのビルド、事後の再現可能なビルド、または来歴の信頼性を保証する同等のプラットフォームである可能性があります。

  • 来歴の下流検証には、来歴の信頼性の検証が含まれます。

利点

Build L1 のすべてに加えて:

  • デジタル署名1 によってビルド後の改ざんを防止します。

  • 解雇のリスクに直面する従業員など、セキュリティ管理を回避することで法的または財務的リスクに直面する敵対者を阻止します。

  • 監査および強化が可能な特定のビルド プラットフォームにビルドを制限することで、攻撃対象領域を削減します。

  • さらなる強化作業 (Build L3) を並行して実行しながら、サポートされているビルド プラットフォームへのチームの大規模な移行を早期に行うことができます。

Build L3: 強化されたビルド

概要

来歴を偽造したり検証を回避するには、ほとんどの攻撃者の能力を超えた脆弱性を悪用する必要があります。

実際には、これは、強力な改ざん保護を提供する強化されたビルド プラットフォーム上でビルドが実行されることを意味します。

対象

ほとんどのソフトウェア リリース。Build L3 では通常、既存のビルド プラットフォームに大幅な変更が必要です。

要件

Build L2 のすべてに加えて:

  • ビルド プラットフォームは、以下のための強力な制御を実装します。

    • 同じプロジェクト内であっても、実行が相互に影響を与えないようにします。
    • 来歴の署名に使用される秘密マテリアルがユーザー定義のビルド ステップからアクセスできないようにします。
利点

Build L2 のすべてに加えて:

  • 内部関係者の脅威、資格情報の漏洩、または他のテナントによるビルド中の改ざんを防止します。

  • 攻撃者にビルド プロセスの困難なエクスプロイトを実行させることで、侵害されたパッケージ アップロードの認証情報の影響を大幅に軽減します。

  • パッケージが公式のソースとビルド プロセスからビルドされたという強い信頼性を提供します。

  1. 来歴の信頼性を検証する別の手段も受け入れられます。

工芸品の制作

このページでは、各 SLSA レベルでアーティファクトを生成するための詳細な技術要件について説明します。対象読者は、プラットフォーム実装者とセキュリティ エンジニアです。

すべての対象者を対象としたレベルの有益な説明については、レベル を参照してください。背景については、用語を参照してください。要件の背後にある理由をよりよく理解するには、脅威と緩和策 を参照してください。

この文書のキーワード「しなければならない」、「してはならない」、「必須」、「しなければならない」、「してはならない」、「すべきである」、「すべきではない」、「推奨」、「してもよい」、「任意」は次のとおりです。 RFC 2119 に記載されているように解釈されます。

概要

ビルドレベル

特定のビルド レベルのアーティファクトを生成するには、プロデューサー と [ビルド プラットフォーム] の間で責任が分担されます。ビルド プラットフォームは、特定のレベルを達成するためにセキュリティ制御を強化しなければなりません (MUST)。一方、プロデューサーは、希望のビルド レベルを達成できるビルド プラットフォームを選択して採用し、選択したプラットフォームで指定された制御を実装しなければなりません (MUST)。

実装担当者 要件 学位 L1L2L3
プロデューサー 適切なビルド プラットフォームを選択する
一貫したビルド プロセスに従う
来歴を配布する
ビルド プラットフォーム 来歴の生成 存在する
真正である
偽造不可能である
分離の強度 ホストされた
分離された

セキュリティのベストプラクティス

安全なプラットフォームを構成するものの正確な定義はこの仕様の範囲を超えていますが、すべての実装は、この仕様に準拠するために業界のセキュリティのベスト プラクティスを使用しなければなりません。これには、適切なアクセス制御の使用、通信の保護、暗号秘密の適切な管理の実装、頻繁な更新の実行、既知の脆弱性の迅速な修正が含まれますが、これらに限定されません。

この問題については、CIS Critical Security Controls などのさまざまな関連規格やガイドを参照できます。

プロデューサー

パッケージのプロデューサーは、ソフトウェアを所有し、リリースする組織です。それは、オープンソース プロジェクト、企業、企業内のチーム、さらには個人の場合もあります。

注: 初期の ドラフト バージョン (v0.1) には、プロデューサーに対する追加の要件があり、パッケージのビルド方法に影響を与えていました。これらは v1.0 仕様で削除され、将来の方向性 に示されているように再評価され、再追加される予定です。

適切なビルド プラットフォームを選択する

プロデューサーは、希望する SLSA ビルド レベルに到達できるビルド プラットフォームを選択しなければなりません。

たとえば、プロデューサーがビルド レベル 3 のアーティファクトを生成したい場合、ビルド レベル 3 の来歴を生成できるビルダーを選択しなければなりません。

一貫したビルドプロセスに従う

プロデューサーは、検証者がビルド プロセスについての期待を形成できるように、一貫した方法でアーティファクトをビルドしなければなりません (MUST)。一部の実装では、プロデューサーは、ビルドプロセスに関する明示的なメタデータを検証者に提供してもよい(MAY)。他の場合には、検証者は暗黙的に期待を形成します (例: 最初の使用時の信頼)。

プロデューサーが、構成ファイルの形式でビルドプロセスに関する明示的なメタデータを必要とする [パッケージエコシステム] を通じてアーティファクトを配布したい場合、プロデューサーは構成ファイルを完成させ、最新の状態に保たなければなりません (MUST)。このメタデータには、アーティファクトのソース リポジトリおよびビルド パラメータに関連する情報が含まれる場合があります。

来歴を配布する

生産者は、アーティファクトの消費者に来歴を配布しなければなりません (MUST)。パッケージ エコシステムが来歴を配布できる場合、プロデューサーはこの責任を パッケージ エコシステム に委任することができます。

プラットフォームを構築する

パッケージの ビルド プラットフォーム は、ソフトウェアをソースからパッケージに変換するために使用されるインフラストラクチャです。これには、ビルドに影響を与える可能性のあるすべてのハードウェア、ソフトウェア、個人、および組織の推移的閉包が含まれます。ビルド プラットフォームは、ホストされたマルチテナント ビルド サービスであることがよくありますが、複数の独立したリビルダーのシステム、単一のソフトウェア プロジェクトで使用される専用のビルド プラットフォーム、さらには個人のワークステーションである場合もあります。理想的には、消費者が [信頼できるプラットフォームの数を最小限に抑える] (principles.md) ことができるように、1 つのビルド プラットフォームが多くの異なるソフトウェア パッケージで使用されます。詳細については、「モデルの構築」(terminology.md#build-model) を参照してください。

ビルド プラットフォームは、来歴の生成ビルド間の分離 という 2 つのことを提供する責任があります。ビルド レベル は、これらの各プロパティがどの程度満たされるかを示します。

来歴の生成

ビルド プラットフォームは、パッケージがどのように作成されたかを説明する来歴を生成する責任があります。

SLSA ビルド レベルは、次の最小要件に従って、全体的な来歴の整合性を記述します。

  • 完全性: 来歴にはどのような情報が含まれていますか?
  • 信頼性: 来歴は建設者とどの程度強く結び付けられますか?
  • 精度: 来歴生成は、ビルド プロセス内での改ざんに対してどの程度耐性がありますか?
要件説明L1L2L3
来歴が存在します

ビルド プロセスは、暗号ダイジェストによって出力パッケージを明確に識別し、そのパッケージがどのように作成されたかを説明する来歴を生成しなければなりません (MUST)。形式は パッケージ エコシステム および/または 消費者 に受け入れられなければなりません。

SLSA Provenance 形式と [associated suite] は、SLSA に使用する際に相互運用可能、汎用的、および明確になるように設計されているため、使用することが推奨されます。要件と実装ガイドラインについては、その形式のドキュメントを参照してください。

代替形式を使用する場合は、各レベルで SLSA 来歴と同等の情報が含まれていなければならず (MUST)、SLSA 来歴に双方向に変換可能である必要があります (SHOULD)。

  • 完全性: ベストエフォート。L1 の来歴には、間違いを発見し、改ざんがない場合に高いレベルでユーザー エクスペリエンスをシミュレートするのに十分な情報が含まれている必要があります (SHOULD)。言い換えれば、来歴の内容はすべてのビルド レベルで同じであるべきです (SHOULD) が、実装に法外な費用がかかる場合、いくつかのフィールドが L1 に存在しなくてもよい (MAY)。
  • 真正性: 要件はありません。
  • 精度: 要件はありません。
来歴は本物です

信頼性: 消費者は、次のことを行うために、来歴証明書の信頼性を検証できなければなりません。

  • 整合性の確保: 来歴証明書のデジタル署名が有効であり、来歴がビルド後に改ざんされていないことを確認します。
  • 信頼の定義: 生成されたアーティファクトを信頼するために信頼する必要があるビルド プラットフォームとその他のエンティティを特定します。

これは、来歴証明書を生成したビルド プラットフォーム コンポーネントのみがアクセスできる秘密鍵からのデジタル署名を介する必要があります (SHOULD)。

署名方法の選択には多くの制約が影響しますが、ビルド プラットフォームでは、透明性ログや、透明性が適切でない場合はタイムスタンプ サービスに依存する方法など、鍵の侵害を検出して修復する能力を向上させる署名方法を使用することが推奨されます。

信頼性により、消費者はビルド プラットフォームの ID などの来歴証明書の内容を信頼できます。

正確性: 以下に記載する場合を除き、来歴はコントロール プレーン (つまり、[来歴で識別される] 信頼境界内) によって生成されなければならず、ビルド プラットフォームのテナント (つまり、信頼境界の外側) によって生成されることはありません。

  • 来歴のデータは、ジェネレーターがビルド プラットフォームであるため、または来歴ジェネレーターがビルド プラットフォームからデータを直接読み取るため、ビルド プラットフォームから取得する必要があります。
  • ビルド プラットフォームには、テナントによる来歴の改ざんを防ぐために、何らかのセキュリティ制御が必要です。ただし、強度に下限はありません。その目的は、法的または財務的リスクに直面する可能性のある敵対者が規制を回避するのを阻止することです。
  • ビルド プラットフォームのテナントによって生成される可能性があるフィールドの例外:
    • 出力アーティファクトの名前と暗号ダイジェスト、つまり SLSA Provenance の「件名」。これが許容される理由の説明については、来歴の出力ダイジェストの出力 を参照してください。
    • ビルド L2 に必須としてマークされていないフィールド。たとえば、SLSA ProvenanceresolvedDependency は、ビルド L2 でテナント生成される場合があります (MAY)。ビルダーは、テナント生成フィールドのそのようなケースを文書化する必要があります。

完全性: 完全であるべきです。

  • 来歴で十分に捕捉されていない 外部パラメータ が存在する可能性があります。
  • 解決された依存関係の完全性はベストエフォートです。
来歴は偽造不可能です

精度: 来歴はテナントによる偽造に対して強力な耐性を持たなければなりません。

  • 来歴の認証に使用される秘密マテリアル (デジタル署名の生成に使用される署名キーなど) は、そのマテリアルに適した安全な管理システムに保管し、ビルド サービス アカウントのみがアクセスできるようにする必要があります。
  • このような秘密マテリアルは、ユーザー定義のビルドステップを実行している環境からアクセスできてはなりません。
  • 来歴のすべてのフィールドは、信頼できるコントロール プレーンのビルド プラットフォームによって生成または検証されなければなりません。Provenance は Authentic に記載されている場合を除き、ユーザー制御のビルド ステップでは、コンテンツを挿入したり変更したりしてはなりません (MUST NOT)。(ビルド L3 では、L2 のフィールドを超える追加のフィールドは必要ありません。)

完全性: 完全であるべきです。

  • 外部パラメータ は完全に列挙する必要があります。
  • 解決された依存関係の完全性はベストエフォートです。

注: この要件は、最初の draft version (v0.1) では「反証不可能」と呼ばれていました。

絶縁強度

ビルド プラットフォームは、同じテナント プロジェクト内であっても、ビルド間を分離する責任があります。言い換えれば、外部の影響なしにビルドが実際に正しく実行されたという保証はどのくらい強いのでしょうか?

SLSA ビルド レベルは、分離強度の最小基準を示します。ビルド プラットフォームの分離強度の評価の詳細については、「ビルド プラットフォームの検証」(verifying-systems.md) を参照してください。

要件説明L1L2L3
ホスト型

すべてのビルド ステップは、個人のワークステーションではなく、共有インフラストラクチャまたは専用インフラストラクチャ上のホストされたビルド プラットフォームを使用して実行されました。

例: GitHub Actions, Google Cloud Build, Travis CI.

孤立

ビルド プラットフォームにより、意図しない外部からの影響を受けずに、隔離された環境でビルド ステップが実行されることが保証されました。言い換えれば、ビルドに対する外部の影響は、ビルド自体によって明確に要求されたものです。これは、同じテナント プロジェクト内のビルド間でも当てはまらなければなりません。

ビルド プラットフォームは次のことを保証する必要があります。

  • 来歴の信憑性が損なわれるため、ビルドが来歴署名キーなどのビルド プラットフォームの秘密にアクセスすることは不可能であってはなりません。
  • 同じマシン上で実行されている別のビルド プロセスのメモリを変更するなど、時間的に重なる 2 つのビルドが相互に影響を及ぼしてはなりません。
  • 1 つのビルドが持続したり、後続のビルドのビルド環境に影響を与えたりすることはできません。言い換えれば、一時的なビルド環境はビルドごとにプロビジョニングする必要があります。
  • あるビルドが、別のビルドで使用されるビルド キャッシュに誤ったエントリを挿入すること (「キャッシュ ポイズニング」とも呼ばれる) を起こしてはなりません。言い換えれば、キャッシュが使用されるかどうかに関係なく、ビルドの出力は同一でなければなりません。
  • ビルド プラットフォームは、そのようなすべての対話が来歴の externalParameters としてキャプチャされない限り、リモート影響を可能にするサービスを開いてはなりません (MUST NOT)。

ビルド自体にはサブ要件はありません。ビルド L3 は、善意のビルドが安全に実行されることを保証することに限定されています。ビルド プラットフォームがプロデューサーによる危険なビルドや安全でないビルドの実行を妨げる必要はありません。特に、「分離」要件は、ビルドがビルド プラットフォームの信頼境界の外側にあるリモート実行サービスまたは「セルフホスト ランナー」を呼び出すことを禁止するものではありません。

注: この要件は、初期の ドラフト バージョン (v0.1) では「分離環境」と「一時環境」に分割されていました。

注: この要件を「密閉」と混同しないでください。これは、ネットワーク アクセスなしでビルドが実行されたことを大まかに意味します。このような要件には、ビルド プラットフォームと個々のビルドの両方に大幅な変更が必要であり、将来の方向性 で検討されています。

Distributing provenance

In order to make provenance for artifacts available after generation for verification, SLSA requires the distribution and verification of provenance metadata in the form of SLSA attestations.

This document provides specifications for distributing provenance, and the relationship between build artifacts and provenance (build attestations). It is primarily concerned with artifacts for ecosystems that distribute build artifacts, but some attention is also paid to ecosystems that distribute container images or only distribute source artifacts, as many of the same principles generally apply to any artifact or group of artifacts.

In addition, this document is primarily for the benefit of artifact distributors, to understand how they can adopt the distribution of SLSA provenance. It is primarily concerned with the means of distributing attestations and the relationship of attestations to build artifacts, and not with the specific format of the attestation itself.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Background

The package ecosystem’s maintainers are responsible for reliably redistributing artifacts and provenance, making the producers’ expectations available to consumers, and providing tools to enable safe artifact consumption (e.g. whether an artifact meets its producer’s expectations).

Relationship between releases and attestations

Attestations SHOULD be bound to artifacts, not releases.

A single “release” of a project, package, or library might include multiple artifacts. These artifacts result from builds on different platforms, architectures or environments. The builds need not happen at roughly the same point in time and might even span multiple days.

It is often difficult or impossible to determine when a release is ‘finished’ because many ecosystems allow adding new artifacts to old releases when adding support for new platforms or architectures. Therefore, the set of attestations for a given release MAY grow over time as additional builds and attestations are created.

Thus, package ecosystems SHOULD support multiple individual attestations per release. At the time of a given build, the relevant provenance for that build can be added to the release, depending on the relationship to the given artifacts.

Relationship between artifacts and attestations

Package ecosystems SHOULD support a one-to-many relationship from build artifacts to attestations to ensure that anyone is free to produce and publish any attestation they might need. However, while there are lots of possible attestations that can have a relationship to a given artifact, in this context SLSA is primarily concerned with build attestations, i.e. provenance, and as such, this specification only considers build attestations, produced by the same maintainers as the artifacts themselves.

By providing provenance alongside an artifact in the manner specified by a given ecosystem, maintainers are considered to be ‘elevating’ these build attestations above all other possible attestations that could be provided by third parties for a given artifact. The ultimate goal is for maintainers to provide the provenance necessary for a repository to be able to verify some potential policy that requires a certain SLSA level for publication, not support the publication of arbitrary attestations by third parties.

As a result, this provenance SHOULD accompany the artifact at publish time, and package ecosystems SHOULD provide a way to map a given artifact to its corresponding attestations. The mappings can be either implicit (e.g. require a custom filename schema that uniquely identifies the provenance over other attestation types) or explicit (e.g. it could happen as a de-facto standard based on where the attestation is published).

The provenance SHOULD have a filename that is directly related to the build artifact filename. For example, for an artifact <filename>.<extension>, the attestation is <filename>.attestation or some similar extension (for example in-toto recommends <filename>.intoto.jsonl.)

Where attestations are published

There are a number of opportunities and venues to publish attestations during and after the build process. Producers MUST publish attestations in at least one place, and SHOULD publish attestations in more than one place:

  • Publish attestations alongside the source repository releases: If the source repository hosting provider offers an artifact “release” feature, such as GitHub releases or GitLab releases, producers SHOULD include provenance as part of such releases. This option has the benefit of requiring no changes to the package registry to support provenance formats, but has the disadvantage of putting the source repository hosting providing in the critical path for installers that want to verify policy at build-time.
  • Publish attestations alongside the artifact in the package registry: Many software repositories already support some variety of publishing 1:1 related files alongside an artifact, sometimes known as “sidecar files”. For example, PyPI supports publishing .asc files representing the PGP signature for an artifact with the same filename (but different extension). This option requires the mapping between artifact and attestation (or attestation vessel) to be 1:1.
  • Publish attestations elsewhere, record their existence in a transparency log: Once an attestation has been generated and published for a build, a hash of the attestation and a pointer to where it is indexed SHOULD be published to a third-party transparency log that exists outside the source repository and package registry. Not only are transparency logs such as Rekor from Sigstore guaranteed to be immutable, but they typically also make monitoring easier. Requiring the presence of the attestation in a monitored transparency log during verification helps ensure the attestation is trustworthy.

Combining these options gives us a process for bootstrapping SLSA adoption within an ecosystem, even if the package registry doesn’t support publishing attestations. First, interested projects modify their release process to produce SLSA provenance. Then, they publish that provenance to their source repository. Finally, they publish the provenance to the package registry, if and when the registry supports it.

Long-term, package registries SHOULD support uploading and distributing provenance alongside the artifact. This model is preferred for two reasons:

  • trust: clients already trust the package registry as the source of their artifacts, and don’t need to trust an additional service;
  • reliability: clients already depend on the package registry as part of their critical path, so distributing provenance via the registry avoids adding an additional point of failure.

Short term, consumers of build artifacts can bootstrap a manual policy by using the source repository only for projects that publish all artifacts and attestations to the source repository, and later extend this to all artifacts published to the package registry via the canonical installation tools once a given ecosystem supports them.

Immutability of attestations

Attestations SHOULD be immutable. Once an attestation is published as it corresponds to a given artifact, that attestation is immutable and cannot be overwritten later with a different attestation that refers to the same artifact. Instead, a new release (and new artifacts) SHOULD be created.

Format of the attestation

The provenance is available to the consumer in a format that the consumer accepts. The format SHOULD be in-toto SLSA Provenance, but another format MAY be used if both producer and consumer agree and it meets all the other requirements.

Considerations for source-based ecosystems

Some ecosystems have support for installing directly from source repositories (an option for Python/pip, Go, etc). In these cases, there is no need to publish or verify provenance because there is no “build” step that translates between a source repository and an artifact that is being installed.

However, for ecosystems that install from source repositories via some intermediary (e.g. Homebrew installing from GitHub release artifacts generated from the repository or GitHub Packages, Go installing through the Go module proxy), these ecosystems distribute “source archives” that are not the bit-for-bit identical form from version control. These intermediaries are transforming the original source repository in some way that constitutes a “build” and as a result SHOULD be providing build provenance for this “package”, and the recommendations outlined here apply.

Verifying build platforms

One of SLSA’s guiding principles is to “trust platforms, verify artifacts”. However, consumers cannot trust platforms to produce Build L3 artifacts and provenance unless they have some proof that the provenance is unforgeable and the builds are isolated.

This section describes the parts of a build platform that consumers SHOULD assess and provides sample questions consumers can ask when assessing a build platform. See also Threats & mitigations and the build model.

Threats

Adversary goal

The SLSA Build track defends against an adversary whose primary goal is to inject unofficial behavior into a package artifact while avoiding detection. Remember that verifiers only accept artifacts whose provenance matches expectations. To bypass this, the adversary tries to either (a) tamper with a legitimate build whose provenance already matches expectations, or (b) tamper with an illegitimate build’s provenance to make it match expectations.

More formally, if a build with external parameters P would produce an artifact with binary hash X and a build with external parameters P’ would produce an artifact with binary hash Y, they wish to produce provenance indicating a build with external parameters P produced an artifact with binary hash Y.

See threats C, D, E, and F for examples of specific threats.

Note: Platform abuse (e.g. running non-build workloads) and attacks against builder availability are out of scope of this document.

Adversary profiles

Consumers SHOULD also evaluate the build platform’s ability to defend against the following types of adversaries.

  1. Project contributors, who can:
    • Create builds on the build platform. These are the adversary’s controlled builds.
    • Modify one or more controlled builds’ external parameters.
    • Modify one or more controlled builds’ environments and run arbitrary code inside those environments.
    • Read the target build’s source repo.
    • Fork the target build’s source repo.
    • Modify a fork of the target build’s source repo and build from it.
  2. Project maintainer, who can:
    • Do everything listed under “project contributors”.
    • Create new builds under the target build’s project or identity.
    • Modify the target build’s source repo and build from it.
    • Modify the target build’s configuration.
  3. Build platform administrators, who can:
    • Do everything listed under “project contributors” and “project maintainers”.
    • Run arbitrary code on the build platform.
    • Read and modify network traffic.
    • Access the control plane’s cryptographic secrets.
    • Remotely access build environments (e.g. via SSH).

Build platform components

Consumers SHOULD consider at least these five elements of the build model when assessing build platforms for SLSA conformance: external parameters, control plane, build environments, caches, and outputs.

image

The following subsections detail these elements of the build model and give prompts for assessing a build platform’s ability to produce SLSA Build L3 provenance. The assessment SHOULD take into account the security model used to identify the transitive closure of the builder.id for the [provenance model], specifically around the platform’s boundaries, actors, and interfaces.

External parameters

External parameters are the external interface to the builder and include all inputs to the build process. Examples include the source to be built, the build definition/script to be executed, user-provided instructions to the control plane for how to create the build environment (e.g. which operating system to use), and any additional user-provided strings.

Prompts for assessing external parameters
  • How does the control plane process user-provided external parameters? Examples: sanitizing, parsing, not at all
  • Which external parameters are processed by the control plane and which are processed by the build environment?
  • What sort of external parameters does the control plane accept for build environment configuration?
  • How do you ensure that all external parameters are represented in the provenance?
  • How will you ensure that future design changes will not add additional external parameters without representing them in the provenance?

Control plane

The control plane is the build platform component that orchestrates each independent build execution. It is responsible for setting up each build and cleaning up afterwards. At SLSA Build L2+ the control plane generates and signs provenance for each build performed on the build platform. The control plane is operated by one or more administrators, who have privileges to modify the control plane.

Prompts for assessing the control plane
  • Administration

    • What are the ways an employee can use privileged access to influence a build or provenance generation? Examples: physical access, terminal access, access to cryptographic secrets
    • What controls are in place to detect or prevent the employee from abusing such access? Examples: two-person approvals, audit logging, workload identities
    • Roughly how many employees have such access?
    • How are privileged accounts protected? Examples: two-factor authentication, client device security policies
    • What plans do you have for recovering from security incidents and platform outages? Are they tested? How frequently?
  • Provenance generation

    • How does the control plane observe the build to ensure the provenance’s accuracy?
    • Are there situations in which the control plane will not generate provenance for a completed build? What are they?
  • Development practices

    • How do you track the control plane’s software and configuration? Example: version control
    • How do you build confidence in the control plane’s software supply chain? Example: SLSA L3+ provenance, build from source
    • How do you secure communications between builder components? Example: TLS with certificate transparency.
    • Are you able to perform forensic analysis on compromised build environments? How? Example: retain base images indefinitely
  • Creating build environments

    • How does the control plane share data with build environments? Example: mounting a shared file system partition
    • How does the control plane protect its integrity from build environments? Example: not mount its own file system partitions on build environments
    • How does the control plane prevent build environments from accessing its cryptographic secrets? Examples: dedicated secret storage, not mounting its own file system partitions to build environments, hardware security modules
  • Managing cryptographic secrets

    • How do you store the control plane’s cryptographic secrets?
    • Which parts of the organization have access to the control plane’s cryptographic secrets?
    • What controls are in place to detect or prevent employees abusing such access? Examples: two-person approvals, audit logging
    • How are secrets protected in memory? Examples: secrets are stored in hardware security modules and backed up in secure cold storage
    • How frequently are cryptographic secrets rotated? Describe the rotation process.
    • What is your plan for remediating cryptographic secret compromise? How frequently is this plan tested?

Build environment

The build environment is the independent execution context where the build takes place. In the case of a distributed build, the build environment is the collection of all execution contexts that run build steps. Each build environment must be isolated from the control plane and from all other build environments, including those running builds from the same tenant or project. Tenants are free to modify the build environment arbitrarily. Build environments must have a means to fetch input artifacts (source, dependencies, etc).

Prompts for assessing build environments
  • Isolation technologies

    • How are build environments isolated from the control plane and each other? Examples: VMs, containers, sandboxed processes
    • How is separation achieved between trusted and untrusted processes?
    • How have you hardened your build environments against malicious tenants? Examples: configuration hardening, limiting attack surface
    • How frequently do you update your isolation software?
    • What is your process for responding to vulnerability disclosures? What about vulnerabilities in your dependencies?
    • What prevents a malicious build from gaining persistence and influencing subsequent builds?
  • Creation and destruction

    • What operating system and utilities are available in build environments on creation? How were these elements chosen? Examples: A minimal Linux distribution with its package manager, OSX with HomeBrew
    • How long could a compromised build environment remain active in the build platform?
  • Network access

    • Are build environments able to call out to remote execution? If so, how do you prevent them from tampering with the control plane or other build environments over the network?
    • Are build environments able to open services on the network? If so, how do you prevent remote interference through these services?

Cache

Builders may have zero or more caches to store frequently used dependencies. Build environments may have either read-only or read-write access to caches.

Prompts for assessing caches
  • What sorts of caches are available to build environments?
  • How are those caches populated?
  • How are cache contents validated before use?

Output storage

Output Storage holds built artifacts and their provenance. Storage may either be shared between build projects or allocated separately per-project.

Prompts for assessing output storage
  • How do you prevent builds from reading or overwriting files that belong to another build? Example: authorization on storage
  • What processing, if any, does the control plane do on output artifacts?

Builder evaluation

Organizations can either self-attest to their answers or seek certification from a third-party auditor. Evidence for self-attestation should be published on the internet and can include information such as the security model defined as part of the provenance. Evidence submitted for third-party certification need not be published.

Verifying artifacts

SLSA uses provenance to indicate whether an artifact is authentic or not, but provenance doesn’t do anything unless somebody inspects it. SLSA calls that inspection verification, and this section describes recommendations for how to verify artifacts and their SLSA provenance.

This section is divided into several subsections. The first describes the process for verifying an artifact and its provenance against a set of expectations. The second describes how to form the expectations used to verify provenance. The third discusses architecture choices for where provenance verification can happen.

How to verify

Verification SHOULD include the following steps:

  • Ensuring that the builder identity is one of those in the map of trusted builder id’s to SLSA level.
  • Verifying the signature on the provenance envelope.
  • Ensuring that the values for buildType and externalParameters in the provenance match the expected values. The package ecosystem MAY allow an approved list of externalParameters to be ignored during verification. Any unrecognized externalParameters SHOULD cause verification to fail.

Threats covered by each step

See Terminology for an explanation of supply chain model and Threats & mitigations for a detailed explanation of each threat.

Note: This subsection assumes that the provenance is in the recommended provenance format. If it is not, then the verifier SHOULD perform equivalent checks on provenance fields that correspond to the ones referenced here.

Step 1: Check SLSA Build level

First, check the SLSA Build level by comparing the artifact to its provenance and the provenance to a preconfigured root of trust. The goal is to ensure that the provenance actually applies to the artifact in question and to assess the trustworthiness of the provenance. This mitigates some or all of threats “E”, “F”, “G”, and “H”, depending on SLSA Build level and where verification happens.

Once, when bootstrapping the verifier:

  • Configure the verifier’s roots of trust, meaning the recognized builder identities and the maximum SLSA Build level each builder is trusted up to. Different verifiers might use different roots of trust, but usually a verifier uses the same roots of trust for all packages. This configuration is likely in the form of a map from (builder public key identity, builder.id) to (SLSA Build level) drawn from the SLSA Conformance Program (coming soon).

    Example root of trust configuration

    The following snippet shows conceptually how a verifier’s roots of trust might be configured using made-up syntax.

    "slsaRootsOfTrust": [
        // A builder trusted at SLSA Build L3, using a fixed public key.
        {
            "publicKey": "HKJEwI...",
            "builderId": "https://somebuilder.example.com/slsa/l3",
            "slsaBuildLevel": 3
        },
        // A different builder that claims to be SLSA Build L3,
        // but this verifier only trusts it to L2.
        {
            "publicKey": "tLykq9...",
            "builderId": "https://differentbuilder.example.com/slsa/l3",
            "slsaBuildLevel": 2
        },
        // A builder that uses Sigstore for authentication.
        {
            "sigstore": {
                "root": "global",  // identifies fulcio/rekor roots
                "subjectAlternativeNamePattern": "https://github.com/slsa-framework/slsa-github-generator/.github/workflows/generator_generic_slsa3.yml@refs/tags/v*.*.*"
            }
            "builderId": "https://github.com/slsa-framework/slsa-github-generator/.github/workflows/generator_generic_slsa3.yml@refs/tags/v*.*.*",
            "slsaBuildLevel": 3,
        }
        ...
    ],
    

Given an artifact and its provenance:

  1. Verify the envelope’s signature using the roots of trust, resulting in a list of recognized public keys (or equivalent).
  2. Verify that statement’s subject matches the digest of the artifact in question.
  3. Verify that the predicateType is https://slsa.dev/provenance/v1.
  4. Look up the SLSA Build Level in the roots of trust, using the recognized public keys and the builder.id, defaulting to SLSA Build L1.

Resulting threat mitigation:

  • Threat “E”: SLSA Build L3 requires protection against compromise of the build process and provenance generation by an external adversary, such as persistence between builds or theft of the provenance signing key. In other words, SLSA Build L3 establishes that the provenance is accurate and trustworthy, assuming you trust the build platform.
    • IMPORTANT: SLSA Build L3 does not cover compromise of the build platform itself, such as by a malicious insider. Instead, verifiers SHOULD carefully consider which build platforms are added to the roots of trust. For advice on establishing trust in build platforms, see Verifying build platforms.
  • Threat “F”: SLSA Build L2 covers tampering of the artifact or provenance after the build. This is accomplished by verifying the subject and signature in the steps above.
  • Threat “G”: Verification by the consumer or otherwise outside of the package registry covers compromise of the registry itself. (Verifying within the registry at publication time is also valuable, but does not cover Threat “G” or “H”.)
  • Threat “H”: Verification by the consumer covers compromise of the package in transit. (Many ecosystems also address this threat using package signatures or checksums.)
    • NOTE: SLSA does not cover adversaries tricking a consumer to use an unintended package, such as through typosquatting.

Step 2: Check expectations

Next, check that the package’s provenance meets your expectations for that package in order to mitigate threat “C”.

In our threat model, the adversary has ability to invoke a build and to publish to the registry. The adversary is not able to write to the source repository, nor do they have insider access to any trusted systems. Your expectations SHOULD be sufficient to detect or prevent this adversary from injecting unofficial behavior into the package.

You SHOULD compare the provenance against expected values for at least the following fields:

What Why
Builder identity from Step 1 To prevent an adversary from building the correct code on an unintended platform
Canonical source repository To prevent an adversary from building from an unofficial fork (or other disallowed source)
buildType To ensure that externalParameters are interpreted as intended
externalParameters To prevent an adversary from injecting unofficial behavior

Verification tools SHOULD reject unrecognized fields in externalParameters to err on the side of caution. It is acceptable to allow a parameter to have a range of values (possibly any value) if it is known that any value in the range is safe. JSON comparison is sufficient for verifying parameters.

TIP: Difficulty in forming meaningful expectations about externalParameters can be a sign that the buildType’s level of abstraction is too low. For example, externalParameters that record a list of commands to run is likely impractical to verify because the commands change on every build. Instead, consider a buildType that defines the list of commands in a configuration file in a source repository, then put only the source repository in externalParameters. Such a design is easier to verify because the source repository is constant across builds.

Step 3: (Optional) Check dependencies recursively

Finally, recursively check the resolvedDependencies as available and to the extent desired. Note that SLSA v1.0 does not have any requirements on the completeness or verification of resolvedDependencies. However, one might wish to verify dependencies in order to mitigate threat “E” and protect against threats further up the supply chain. If resolvedDependencies is incomplete, these checks can be done on a best-effort basis.

A Verification Summary Attestation (VSA) can make dependency verification more efficient by recording the result of prior verifications. A trimming heuristic or exception mechanism is almost always necessary when verifying dependencies because there will be transitive dependencies that are SLSA Build L0. (For example, consider the compiler’s compiler’s compiler’s … compiler.)

Forming Expectations

Expectations are known provenance values that indicate the corresponding artifact is authentic. For example, a package ecosystem may maintain a mapping between package names and their canonical source repositories. That mapping constitutes a set of expectations.

Possible models for forming expectations include:

  • Trust on first use: Accept the first version of the package as-is. On each version update, compare the old provenance to the new provenance and alert on any differences. This can be augmented by having rules about what changes are benign, such as a parameter known to be safe or a heuristic about safe git branches or tags.

  • Defined by producer: The package producer tells the verifier what their expectations ought to be. In this model, the verifier SHOULD provide an authenticated communication mechanism for the producer to set the package’s expectations, and there SHOULD be some protection against an adversary unilaterally modifying them. For example, modifications might require two-party control, or consumers might have to accept each policy change (another form of trust on first use).

  • Defined in source: The source repository tells the verifier what their expectations ought to be. In this model, the package name is immutably bound to a source repository and all other external parameters are defined in the source repository. This is how the Go ecosystem works, for example, since the package name is the source repository location.

It is important to note that expectations are tied to a package name, whereas provenance is tied to an artifact. Different versions of the same package name will likely have different artifacts and therefore different provenance. Similarly, an artifact might have different names in different package ecosystems but use the same provenance file.

Architecture options

There are several options (non-mutually exclusive) for where provenance verification can happen: the package ecosystem at upload time, the consumers at download time, or via a continuous monitoring system. Each option comes with its own set of considerations, but all are valid and at least one SHOULD be used.

More than one component can verify provenance. For example, even if a package ecosystem verifies provenance, consumers who get artifacts from that package ecosystem might wish to verify provenance themselves for defense in depth. They can do so using either client-side verification tooling or by polling a monitor.

Package ecosystem

A package ecosystem is a set of rules and conventions governing how packages are distributed. Every package artifact has an ecosystem, whether it is formal or ad-hoc. Some ecosystems are formal, such as language distribution (e.g. Python/PyPA), operating system distribution (e.g. Debian/Apt), or artifact distribution (e.g. OCI). Other ecosystems are informal, such as a convention used within a company. Even ad-hoc distribution of software, such as through a link on a website, is considered an “ecosystem”. For more background, see Package Model.

During package upload, a package ecosystem can ensure that the artifact’s provenance matches the expected values for that package name’s provenance before accepting it into the package registry. This option is RECOMMENDED whenever possible because doing so benefits all of the package ecosystem’s clients.

The package ecosystem is responsible for making its expectations available to consumers, reliably redistributing artifacts and provenance, and providing tools to enable safe artifact consumption (e.g. whether an artifact meets expectations).

Consumer

A package artifact’s consumer is the organization or individual that uses the package artifact.

Consumers can form their own expectations for artifacts or use the default expectations provided by the package producer and/or package ecosystem. When forming their own expectations, the consumer uses client-side verification tooling to ensure that the artifact’s provenance matches their expectations for that package before use (e.g. during installation or deployment). Client-side verification tooling can be either standalone, such as slsa-verifier, or built into the package ecosystem client.

Monitor

A monitor is a service that verifies provenance for a set of packages and publishes the result of that verification. The set of packages verified by a monitor is arbitrary, though it MAY mimic the set of packages published through one or more package ecosystems. The monitor SHOULD publish its expectations for all the packages it verifies.

Consumers can continuously poll a monitor to detect artifacts that do not meet the monitor’s expectations. Detecting artifacts that fail verification is of limited benefit unless a human or automated system takes action in response to the failed verification.

Threats & mitigations

What follows is a comprehensive technical analysis of supply chain threats and their corresponding mitigations in SLSA. For an introduction to the supply chain threats that SLSA protects against, see Supply chain threats.

The examples on this section are meant to:

  • Explain the reasons for each of the SLSA requirements.
  • Increase confidence that the SLSA requirements are sufficient to achieve the desired level of integrity protection.
  • Help implementers better understand what they are protecting against so that they can better design and implement controls.

Supply Chain Threats

See Terminology for an explanation of supply chain model.

Source threats

A source integrity threat is a potential for an adversary to introduce a change to the source code that does not reflect the intent of the software producer. This includes the threat of an authorized individual introducing an unauthorized change—in other words, an insider threat.

SLSA v1.0 does not address source threats, but we anticipate doing so in a future version. In the meantime, the threats and potential mitigations listed here show how SLSA v1.0 can fit into a broader supply chain security program.

(A) Submit unauthorized change

An adversary introduces a change through the official source control management interface without any special administrator privileges.

SLSA v1.0 does not address this threat, but it may be addressed in a future version.

(B) Compromise source repo

An adversary introduces a change to the source control repository through an administrative interface, or through a compromise of the underlying infrastructure.

SLSA v1.0 does not address this threat, but it may be addressed in a future version.

(C) Build from modified source

An adversary builds from a version of the source code that does not match the official source control repository.

The mitigation here is to compare the provenance against expectations for the package, which depends on SLSA Build L1 for provenance. (Threats against the provenance itself are covered by (E) and (F).)

Build from unofficial fork of code (expectations)

Threat: Build using the expected CI/CD process but from an unofficial fork of the code that may contain unauthorized changes.

Mitigation: Verifier requires the provenance’s source location to match an expected value.

Example: MyPackage is supposed to be built from GitHub repo good/my-package. Instead, it is built from evilfork/my-package. Solution: Verifier rejects because the source location does not match.

Build from unofficial branch or tag (expectations)

Threat: Build using the expected CI/CD process and source location, but checking out an “experimental” branch or similar that may contain code not intended for release.

Mitigation: Verifier requires that the provenance’s source branch/tag matches an expected value, or that the source revision is reachable from an expected branch.

Example: MyPackage’s releases are tagged from the main branch, which has branch protections. Adversary builds from the unprotected experimental branch containing unofficial changes. Solution: Verifier rejects because the source revision is not reachable from main.

Build from unofficial build steps (expectations)

Threat: Build the package using the proper CI/CD platform but with unofficial build steps.

Mitigation: Verifier requires that the provenance’s build configuration source matches an expected value.

Example: MyPackage is expected to be built by Google Cloud Build using the build steps defined in the source’s cloudbuild.yaml file. Adversary builds with Google Cloud Build, but using custom build steps provided over RPC. Solution: Verifier rejects because the build steps did not come from the expected source.

Build from unofficial parameters (expectations)

Threat: Build using the expected CI/CD process, source location, and branch/tag, but using a parameter that injects unofficial behavior.

Mitigation: Verifier requires that the provenance’s external parameters all match expected values.

Example 1: MyPackage is supposed to be built from the release.yml workflow. Adversary builds from the debug.yml workflow. Solution: Verifier rejects because the workflow parameter does not match the expected value.

Example 2: MyPackage’s GitHub Actions Workflow uses github.event.inputs to allow users to specify custom compiler flags per invocation. Adversary sets a compiler flag that overrides a macro to inject malicious behavior into the output binary. Solution: Verifier rejects because the inputs parameter was not expected.

Build from modified version of code modified after checkout (expectations)

Threat: Build from a version of the code that includes modifications after checkout.

Mitigation: Build platform pulls directly from the source repository and accurately records the source location in provenance.

Example: Adversary fetches from MyPackage’s source repo, makes a local commit, then requests a build from that local commit. Builder records the fact that it did not pull from the official source repo. Solution: Verifier rejects because the source repo does not match the expected value.

Dependency threats

A dependency threat is a vector for an adversary to introduce behavior to an artifact through external software that the artifact requires to function.

SLSA mitigates dependency threats when you verify your dependencies’ SLSA provenance.

(D) Use compromised dependency

Use a compromised build dependency

Threat: The adversary injects malicious code into software required to build the artifact.

Mitigation: N/A - This threat is out of scope of SLSA v1.0, though the build provenance may list build dependencies on a best-effort basis for forensic analysis. You may be able to mitigate this threat by pinning your build dependencies, preferably by digest rather than version number. Alternatively, you can apply SLSA recursively, but we have not yet standardized how to do so.

Example: The artifact uses libFoo and requires its source code to compile. The adversary compromises libFoo‘s source repository and inserts malicious code. When your artifact builds, it contains the adversary’s malicious code.

Use a compromised runtime dependency

Threat: The adversary injects malicious code into software required to run the artifact.

Mitigation: N/A - This threat is out of scope of SLSA v1.0. However, you can mitigate this threat by verifying SLSA provenance for all of your runtime dependencies that provide provenance.

Example: The artifact dynamically links libBar and requires a binary version to run. The adversary compromises libBar‘s build process and inserts malicious code. When your artifact runs, it contains the adversary’s malicious code.

Build threats

A build integrity threat is a potential for an adversary to introduce behavior to an artifact without changing its source code, or to build from a source, dependency, and/or process that is not intended by the software producer.

The SLSA Build track mitigates these threats when the consumer verifies artifacts against expectations, confirming that the artifact they recieved was built in the expected manner.

(E) Compromise build process

An adversary introduces an unauthorized change to a build output through tampering of the build process; or introduces false information into the provenance.

These threats are directly addressed by the SLSA Build track.

Forge values of the provenance (other than output digest) (Build L2+)

Threat: Generate false provenance and get the trusted control plane to sign it.

Mitigation: At Build L2+, the trusted control plane generates all information that goes in the provenance, except (optionally) the output artifact hash. At Build L3+, this is hardened to prevent compromise even by determined adversaries.

Example 1 (Build L2): Provenance is generated on the build worker, which the adversary has control over. Adversary uses a malicious process to get the build platform to claim that it was built from source repo good/my-package when it was really built from evil/my-package. Solution: Builder generates and signs the provenance in the trusted control plane; the worker reports the output artifacts but otherwise has no influence over the provenance.

Example 2 (Build L3): Provenance is generated in the trusted control plane, but workers can break out of the container to access the signing material. Solution: Builder is hardened to provide strong isolation against tenant projects.

Forge output digest of the provenance (n/a)

Threat: The tenant-controlled build process sets output artifact digest (subject in SLSA Provenance) without the trusted control plane verifying that such an artifact was actually produced.

Mitigation: None; this is not a problem. Any build claiming to produce a given artifact could have actually produced it by copying it verbatim from input to output.2 (Reminder: Provenance is only a claim that a particular artifact was built, not that it was published to a particular registry.)

Example: A legitimate MyPackage artifact has digest abcdef and is built from source repo good/my-package. A malicious build from source repo evil/my-package claims that it built artifact abcdef when it did not. Solution: Verifier rejects because the source location does not match; the forged digest is irrelevant.

Compromise project owner (Build L2+)

Threat: An adversary gains owner permissions for the artifact’s build project.

Mitigation: The build project owner must not have the ability to influence the build process or provenance generation.

Example: MyPackage is built on Awesome Builder under the project “mypackage”. Adversary is an administrator of the “mypackage” project. Awesome Builder allows administrators to debug build machines via SSH. An adversary uses this feature to alter a build in progress.

Compromise other build (Build L3)

Threat: Perform a malicious build that alters the behavior of a benign build running in parallel or subsequent environments.

Mitigation: Builds are isolated from one another, with no way for one to affect the other or persist changes.

Example 1: A build platform runs all builds for project MyPackage on the same machine as the same Linux user. An adversary starts a malicious build that listens for another build and swaps out source files, then starts a benign build. The benign build uses the malicious build’s source files, but its provenance says it used benign source files. Solution: The build platform changes architecture to isolate each build in a separate VM or similar.

Example 2: A build platform uses the same machine for subsequent builds. An adversary first runs a build that replaces the make binary with a malicious version, then subsequently runs an otherwise benign build. Solution: The builder changes architecture to start each build with a clean machine image.

Steal cryptographic secrets (Build L3)

Threat: Use or exfiltrate the provenance signing key or some other cryptographic secret that should only be available to the build platform.

Mitigation: Builds are isolated from the trusted build platform control plane, and only the control plane has access to cryptographic secrets.

Example: Provenance is signed on the build worker, which the adversary has control over. Adversary uses a malicious process that generates false provenance and signs it using the provenance signing key. Solution: Builder generates and signs provenance in the trusted control plane; the worker has no access to the key.

Poison the build cache (Build L3)

Threat: Add a malicious artifact to a build cache that is later picked up by a benign build process.

Mitigation: Build caches must be isolate between builds to prevent such cache poisoning attacks.

Example: Build platform uses a build cache across builds, keyed by the hash of the source file. Adversary runs a malicious build that creates a “poisoned” cache entry with a falsified key, meaning that the value wasn’t really produced from that source. A subsequent build then picks up that poisoned cache entry.

Compromise build platform admin (verification)

Threat: An adversary gains admin permissions for the artifact’s build platform.

Mitigation: The build platform must have controls in place to prevent and detect abusive behavior from administrators (e.g. two-person approvals, audit logging).

Example: MyPackage is built on Awesome Builder. Awesome Builder allows engineers on-call to SSH into build machines to debug production issues. An adversary uses this access to modify a build in progress. Solution: Consumers do not accept provenance from the build platform unless they trust sufficient controls are in place to prevent abusing admin privileges.

(F) Upload modified package

An adversary uploads a package not built from the proper build process.

Build with untrusted CI/CD (expectations)

Threat: Build using an unofficial CI/CD pipeline that does not build in the correct way.

Mitigation: Verifier requires provenance showing that the builder matched an expected value.

Example: MyPackage is expected to be built on Google Cloud Build, which is trusted up to Build L3. Adversary builds on SomeOtherBuildPlatform, which is only trusted up to Build L2, and then exploits SomeOtherBuildPlatform to inject malicious behavior. Solution: Verifier rejects because builder is not as expected.

Upload package without provenance (Build L1)

Threat: Upload a package without provenance.

Mitigation: Verifier requires provenance before accepting the package.

Example: Adversary uploads a malicious version of MyPackage to the package repository without provenance. Solution: Verifier rejects because provenance is missing.

Tamper with artifact after CI/CD (Build L1)

Threat: Take a benign version of the package, modify it in some way, then re-upload it using the original provenance.

Mitigation: Verifier checks that the provenance’s subject matches the hash of the package.

Example: Adversary performs a proper build, modifies the artifact, then uploads the modified version of the package to the repository along with the provenance. Solution: Verifier rejects because the hash of the artifact does not match the subject found within the provenance.

Tamper with provenance (Build L2)

Threat: Perform a build that would not meet expectations, then modify the provenance to make the expectations checks pass.

Mitigation: Verifier only accepts provenance with a valid cryptographic signature or equivalent proving that the provenance came from an acceptable builder.

Example: MyPackage is expected to be built by GitHub Actions from the good/my-package repo. Adversary builds with GitHub Actions from the evil/my-package repo and then modifies the provenance so that the source looks like it came from good/my-package. Solution: Verifier rejects because the cryptographic signature is no longer valid.

(G) Compromise package repo

An adversary modifies the package on the package repository using an administrative interface or through a compromise of the infrastructure.

De-list artifact

Threat: The package repository stops serving the artifact.

Mitigation: N/A - This threat is out of scope of SLSA v1.0.

De-list provenance

Threat: The package repository stops serving the provenance.

Mitigation: N/A - This threat is out of scope of SLSA v1.0.

(H) Use compromised package

An adversary modifies the package after it has left the package repository, or tricks the user into using an unintended package.

Typosquatting

Threat: Register a package name that is similar looking to a popular package and get users to use your malicious package instead of the benign one.

Mitigation: Mostly outside the scope of SLSA. That said, the requirement to make the source available can be a mild deterrent, can aid investigation or ad-hoc analysis, and can complement source-based typosquatting solutions.

Availability threats

An availability threat is a potential for an adversary to deny someone from reading a source and its associated change history, or from building a package.

SLSA v1.0 does not address availability threats, though future versions might.

(A)(B) Delete the code

Threat: Perform a build from a particular source revision and then delete that revision or cause it to get garbage collected, preventing anyone from inspecting the code.

Mitigation: Some system retains the revision and its version control history, making it available for inspection indefinitely. Users cannot delete the revision except as part of a transparent legal or privacy process.

Example: An adversary submits malicious code to the MyPackage GitHub repo, builds from that revision, then does a force push to erase that revision from history (or requests that GitHub delete the repo.) This would make the revision unavailable for inspection. Solution: Verifier rejects the package because it lacks a positive attestation showing that some system, such as GitHub, ensured retention and availability of the source code.

(D) A dependency becomes temporarily or permanently unavailable to the build process

Threat: Unable to perform a build with the intended dependencies.

Mitigation: Outside the scope of SLSA. That said, some solutions to support hermetic and reproducible builds may also reduce the impact of this threat.

Verification threats

Threats that can compromise the ability to prevent or detect the supply chain security threats above.

Tamper with recorded expectations

Threat: Modify the verifier’s recorded expectations, causing the verifier to accept an unofficial package artifact.

Mitigation: Changes to recorded expectations requires some form of authorization, such as two-party review.

Example: The package ecosystem records its expectations for a given package name in a configuration file that is modifiable by that package’s producer. The configuration for MyPackage expects the source repository to be good/my-package. The adversary modifies the configuration to also accept evil/my-package, and then builds from that repository and uploads a malicious version of the package. Solution: Changes to the recorded expectations require two-party review.

Forge change metadata

Threat: Forge the change metadata to alter attribution, timestamp, or discoverability of a change.

Mitigation: Source control platform strongly authenticates actor identity, timestamp, and parent revisions.

Example: Adversary submits a git commit with a falsified author and timestamp, and then rewrites history with a non-fast-forward update to make it appear to have been made long ago. Solution: Consumer detects this by seeing that such changes are not strongly authenticated and thus not trustworthy.

Exploit cryptographic hash collisions

Threat: Exploit a cryptographic hash collision weakness to bypass one of the other controls.

Mitigation: Require cryptographically secure hash functions for commit checksums and provenance subjects, such as SHA-256.

Examples: Construct a benign file and a malicious file with the same SHA-1 hash. Get the benign file reviewed and then submit the malicious file. Alternatively, get the benign file reviewed and submitted and then build from the malicious file. Solution: Only accept cryptographic hashes with strong collision resistance.

Provenance

To trace software back to the source and define the moving parts in a complex supply chain, provenance needs to be there from the very beginning. It’s the verifiable information about software artifacts describing where, when and how something was produced. For higher SLSA levels and more resilient integrity guarantees, provenance requirements are stricter and need a deeper, more technical understanding of the predicate.

This document defines the following predicate type within the in-toto attestation framework:

"predicateType": "https://slsa.dev/provenance/v1"

Important: Always use the above string for predicateType rather than what is in the URL bar. The predicateType URI will always resolve to the latest minor version of this specification. See parsing rules for more information.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Purpose

Describe how an artifact or set of artifacts was produced so that:

  • Consumers of the provenance can verify that the artifact was built according to expectations.
  • Others can rebuild the artifact, if desired.

This predicate is the RECOMMENDED way to satisfy the SLSA v1.0 provenance requirements.

Model

Provenance is an attestation that a particular build platform produced a set of software artifacts through execution of the buildDefinition.

Build Model

The model is as follows:

  • Each build runs as an independent process on a multi-tenant build platform. The builder.id identifies this platform, representing the transitive closure of all entities that are trusted to faithfully run the build and record the provenance. (Note: The same model can be used for platform-less or single-tenant build platforms.)

    • The build platform implementer SHOULD define a security model for the build platform in order to clearly identify the platform’s boundaries, actors, and interfaces. This model SHOULD then be used to identify the transitive closure of the trusted build platform for the builder.id as well as the trusted control plane.
  • The build process is defined by a parameterized template, identified by buildType. This encapsulates the process that ran, regardless of what platform ran it. Often the build type is specific to the build platform because most build platforms have their own unique interfaces.

  • All top-level, independent inputs are captured by the parameters to the template. There are two types of parameters:

    • externalParameters: the external interface to the build. In SLSA, these values are untrusted; they MUST be included in the provenance and MUST be verified downstream.

    • internalParameters: set internally by the platform. In SLSA, these values are trusted because the platform is trusted; they are OPTIONAL and need not be verified downstream. They MAY be included to enable reproducible builds, debugging, or incident response.

  • All artifacts fetched during initialization or execution of the build process are considered dependencies, including those referenced directly by parameters. The resolvedDependencies captures these dependencies, if known. For example, a build that takes a git repository URI as a parameter might record the specific git commit that the URI resolved to as a dependency.

  • During execution, the build process might communicate with the build platform’s control plane and/or build caches. This communication is not captured directly in the provenance, but is instead implied by builder.id and subject to SLSA Requirements. Such communication SHOULD NOT influence the definition of the build; if it does, it SHOULD go in resolvedDependencies instead.

  • Finally, the build process outputs one or more artifacts, identified by subject.

For concrete examples, see index of build types.

Parsing rules

This predicate follows the in-toto attestation parsing rules. Summary:

  • Consumers MUST ignore unrecognized fields unless otherwise noted.
  • The predicateType URI includes the major version number and will always change whenever there is a backwards incompatible change.
  • Minor version changes are always backwards compatible and “monotonic.” Such changes do not update the predicateType.
  • Unset, null, and empty field values MUST be interpreted equivalently.

Schema

NOTE: This subsection describes the fields within predicate. For a description of the other top-level fields, such as subject, see Statement.

{% include_relative schema/provenance.cue %}
Protocol buffer schema

Link: provenance.proto

{% include_relative schema/provenance.proto %}

Provenance

REQUIRED for SLSA Build L1: buildDefinition, runDetails

FieldTypeDescription
buildDefinition BuildDefinition

The input to the build. The accuracy and completeness are implied by runDetails.builder.id.

runDetails RunDetails

Details specific to this particular execution of the build.

BuildDefinition

REQUIRED for SLSA Build L1: buildType, externalParameters

FieldTypeDescription
buildType string (TypeURI)

Identifies the template for how to perform the build and interpret the parameters and dependencies.

The URI SHOULD resolve to a human-readable specification that includes: overall description of the build type; schema for externalParameters and internalParameters; unambiguous instructions for how to initiate the build given this BuildDefinition, and a complete example. Example: https://slsa-framework.github.io/github-actions-buildtypes/workflow/v1

externalParameters object

The parameters that are under external control, such as those set by a user or tenant of the build platform. They MUST be complete at SLSA Build L3, meaning that that there is no additional mechanism for an external party to influence the build. (At lower SLSA Build levels, the completeness MAY be best effort.)

The build platform SHOULD be designed to minimize the size and complexity of externalParameters, in order to reduce fragility and ease verification. Consumers SHOULD have an expectation of what “good” looks like; the more information that they need to check, the harder that task becomes.

Verifiers SHOULD reject unrecognized or unexpected fields within externalParameters.

internalParameters object

The parameters that are under the control of the entity represented by builder.id. The primary intention of this field is for debugging, incident response, and vulnerability management. The values here MAY be necessary for reproducing the build. There is no need to verify these parameters because the build platform is already trusted, and in many cases it is not practical to do so.

resolvedDependencies array (ResourceDescriptor)

Unordered collection of artifacts needed at build time. Completeness is best effort, at least through SLSA Build L3. For example, if the build script fetches and executes “example.com/foo.sh”, which in turn fetches “example.com/bar.tar.gz”, then both “foo.sh” and “bar.tar.gz” SHOULD be listed here.

The BuildDefinition describes all of the inputs to the build. It SHOULD contain all the information necessary and sufficient to initialize the build and begin execution.

The externalParameters and internalParameters are the top-level inputs to the template, meaning inputs not derived from another input. Each is an arbitrary JSON object, though it is RECOMMENDED to keep the structure simple with string values to aid verification. The same field name SHOULD NOT be used for both externalParameters and internalParameters.

The parameters SHOULD only contain the actual values passed in through the interface to the build platform. Metadata about those parameter values, particularly digests of artifacts referenced by those parameters, SHOULD instead go in resolvedDependencies. The documentation for buildType SHOULD explain how to convert from a parameter to the dependency uri. For example:

"externalParameters": {
    "repository": "https://github.com/octocat/hello-world",
    "ref": "refs/heads/main"
},
"resolvedDependencies": [{
    "uri": "git+https://github.com/octocat/hello-world@refs/heads/main",
    "digest": {"gitCommit": "7fd1a60b01f91b314f59955a4e4d4e80d8edf11d"}
}]

Guidelines:

  • Maximize the amount of information that is implicit from the meaning of buildType. In particular, any value that is boilerplate and the same for every build SHOULD be implicit.

  • Reduce parameters by moving configuration to input artifacts whenever possible. For example, instead of passing in compiler flags via an external parameter that has to be verified separately, require the flags to live next to the source code or build configuration so that verifying the latter automatically verifies the compiler flags.

  • In some cases, additional external parameters might exist that do not impact the behavior of the build, such as a deadline or priority. These extra parameters SHOULD be excluded from the provenance after careful analysis that they indeed pose no security impact.

  • If possible, architect the build platform to use this definition as its sole top-level input, in order to guarantee that the information is sufficient to run the build.

  • When build configuration is evaluated client-side before being sent to the server, such as transforming version-controlled YAML into ephemeral JSON, some solution is needed to make verification practical. Consumers need a way to know what configuration is expected and the usual way to do that is to map it back to version control, but that is not possible if the server cannot verify the configuration’s origins. Possible solutions:

    • (RECOMMENDED) Rearchitect the build platform to read configuration directly from version control, recording the server-verified URI in externalParameters and the digest in resolvedDependencies.

    • Record the digest in the provenance3 and use a separate provenance attestation to link that digest back to version control. In this solution, the client-side evaluation is considered a separate “build” that SHOULD be independently secured using SLSA, though securing it can be difficult since it usually runs on an untrusted workstation.

  • The purpose of resolvedDependencies is to facilitate recursive analysis of the software supply chain. Where practical, it is valuable to record the URI and digest of artifacts that, if compromised, could impact the build. At SLSA Build L3, completeness is considered “best effort”.

RunDetails

REQUIRED for SLSA Build L1: builder

FieldTypeDescription
builder Builder

Identifies the build platform that executed the invocation, which is trusted to have correctly performed the operation and populated this provenance.

metadata BuildMetadata

Metadata about this particular execution of the build.

byproducts array (ResourceDescriptor)

Additional artifacts generated during the build that are not considered the “output” of the build but that might be needed during debugging or incident response. For example, this might reference logs generated during the build and/or a digest of the fully evaluated build configuration.

In most cases, this SHOULD NOT contain all intermediate files generated during the build. Instead, this SHOULD only contain files that are likely to be useful later and that cannot be easily reproduced.

Builder

REQUIRED for SLSA Build L1: id

FieldTypeDescription
id string (TypeURI)

URI indicating the transitive closure of the trusted build platform. This is intended to be the sole determiner of the SLSA Build level.

If a build platform has multiple modes of operations that have differing security attributes or SLSA Build levels, each mode MUST have a different builder.id and SHOULD have a different signer identity. This is to minimize the risk that a less secure mode compromises a more secure one.

The builder.id URI SHOULD resolve to documentation explaining:

  • The scope of what this ID represents.
  • The claimed SLSA Build level.
  • The accuracy and completeness guarantees of the fields in the provenance.
  • Any fields that are generated by the tenant-controlled build process and not verified by the trusted control plane, except for the subject.
  • The interpretation of any extension fields.
builderDependencies array (ResourceDescriptor)

Dependencies used by the orchestrator that are not run within the workload and that do not affect the build, but might affect the provenance generation or security guarantees.

version map (string→string)

Map of names of components of the build platform to their version.

The build platform, or builder for short, represents the transitive closure of all the entities that are, by necessity, trusted to faithfully run the build and record the provenance. This includes not only the software but the hardware and people involved in running the service. For example, a particular instance of Tekton could be a build platform, while Tekton itself is not. For more info, see Build model.

The id MUST reflect the trust base that consumers care about. How detailed to be is a judgement call. For example, GitHub Actions supports both GitHub-hosted runners and self-hosted runners. The GitHub-hosted runner might be a single identity because it’s all GitHub from the consumer’s perspective. Meanwhile, each self-hosted runner might have its own identity because not all runners are trusted by all consumers.

Consumers MUST accept only specific signer-builder pairs. For example, “GitHub” can sign provenance for the “GitHub Actions” builder, and “Google” can sign provenance for the “Google Cloud Build” builder, but “GitHub” cannot sign for the “Google Cloud Build” builder.

Design rationale: The builder is distinct from the signer in order to support the case where one signer generates attestations for more than one builder, as in the GitHub Actions example above. The field is REQUIRED, even if it is implicit from the signer, to aid readability and debugging. It is an object to allow additional fields in the future, in case one URI is not sufficient.

BuildMetadata

REQUIRED: (none)

FieldTypeDescription
invocationId string

Identifies this particular build invocation, which can be useful for finding associated logs or other ad-hoc analysis. The exact meaning and format is defined by builder.id; by default it is treated as opaque and case-sensitive. The value SHOULD be globally unique.

startedOn string (Timestamp)

The timestamp of when the build started.

finishedOn string (Timestamp)

The timestamp of when the build completed.

Extension fields

Implementations MAY add extension fields to any JSON object to describe information that is not captured in a standard field. Guidelines:

  • Extension fields SHOULD use names of the form <vendor>_<fieldname>, e.g. examplebuilder_isCodeReviewed. This practice avoids field name collisions by namespacing each vendor. Non-extension field names never contain an underscore.
  • Extension fields MUST NOT alter the meaning of any other field. In other words, an attestation with an absent extension field MUST be interpreted identically to an attestation with an unrecognized (and thus ignored) extension field.
  • Extension fields SHOULD follow the monotonic principle, meaning that deleting or ignoring the extension SHOULD NOT turn a DENY decision into an ALLOW.

Verification

Please see Verifying Artifacts for a detailed discussion of provenance verification.

Index of build types

The following is a partial index of build type definitions. Each contains a complete example predicate.

To add an entry here, please send a pull request on GitHub.

Migrating from 0.2

To migrate from version 0.2 (old), use the following pseudocode. The meaning of each field is unchanged unless otherwise noted.

{
    "buildDefinition": {
        // The `buildType` MUST be updated for v1.0 to describe how to
        // interpret `inputArtifacts`.
        "buildType": /* updated version of */ old.buildType,
        "externalParameters":
            old.invocation.parameters + {
            // It is RECOMMENDED to rename "entryPoint" to something more
            // descriptive.
            "entryPoint": old.invocation.configSource.entryPoint,
            // It is OPTIONAL to rename "source" to something more descriptive,
            // especially if "source" is ambiguous or confusing.
            "source": old.invocation.configSource.uri,
        },
        "internalParameters": old.invocation.environment,
        "resolvedDependencies":
            old.materials + [
            {
                "uri": old.invocation.configSource.uri,
                "digest": old.invocation.configSource.digest,
            }
        ]
    },
    "runDetails": {
        "builder": {
            "id": old.builder.id,
            "builderDependencies": null,  // not in v0.2
            "version": null,  // not in v0.2
        },
        "metadata": {
            "invocationId": old.metadata.buildInvocationId,
            "startedOn": old.metadata.buildStartedOn,
            "finishedOn": old.metadata.buildFinishedOn,
        },
        "byproducts": null,  // not in v0.2
    },
}

The following fields from v0.2 are no longer present in v1.0:

  • entryPoint: Use externalParameters[<name>] instead.
  • buildConfig: No longer inlined into the provenance. Instead, either:
    • If the configuration is a top-level input, record its digest in externalParameters["config"].
    • Else if there is a known use case for knowing the exact resolved build configuration, record its digest in byproducts. An example use case might be someone who wishes to parse the configuration to look for bad patterns, such as curl | bash.
    • Else omit it.
  • metadata.completeness: Now implicit from builder.id.
  • metadata.reproducible: Now implicit from builder.id.

Change history

v1.0

Major refactor to reduce misinterpretation, including a minor change in model.

  • Significantly expanded all documentation.
  • Altered the model slightly to better align with real-world build platforms, align with reproducible builds, and make verification easier.
  • Grouped fields into buildDefinition vs runDetails.
  • Renamed:
    • parameters -> externalParameters (slight change in semantics)
    • environment -> internalParameters (slight change in semantics)
    • materials -> resolvedDependencies (slight change in semantics)
    • buildInvocationId -> invocationId
    • buildStartedOn -> startedOn
    • buildFinishedOn -> finishedOn
  • Removed:
    • configSource: No longer special-cased. Now represented as externalParameters + resolvedDependencies.
    • buildConfig: No longer inlined into the provenance. Can be replaced with a reference in externalParameters or byproducts, depending on the semantics, or omitted if not needed.
    • completeness and reproducible: Now implied by builder.id.
  • Added:
    • ResourceDescriptor: annotations, content, downloadLocation, mediaType, name
    • Builder: builderDependencies and version
    • byproducts
  • Changed naming convention for extension fields.

Differences from RC1 and RC2:

  • Renamed systemParameters (RC1 + RC2) -> internalParameters (final).
  • Changed naming convention for extension fields (in RC2).
  • Renamed localName (RC1) -> name (RC2).
  • Added annotations and content (in RC2).

v0.2

Refactored to aid clarity and added buildConfig. The model is unchanged.

  • Replaced definedInMaterial and entryPoint with configSource.
  • Renamed recipe to invocation.
  • Moved invocation.type to top-level buildType.
  • Renamed arguments to parameters.
  • Added buildConfig, which can be used as an alternative to configSource to validate the configuration.

rename: slsa.dev/provenance

Renamed to “slsa.dev/provenance”.

v0.1.1

  • Added metadata.buildInvocationId.

v0.1

Initial version, named “in-toto.io/Provenance”

SLSA Verification Summary Attestation (VSA)

Verification summary attestations communicate that an artifact has been verified at a specific SLSA level and details about that verification.

This document defines the following predicate type within the in-toto attestation framework:

"predicateType": "https://slsa.dev/verification_summary/v1"

Important: Always use the above string for predicateType rather than what is in the URL bar. The predicateType URI will always resolve to the latest minor version of this specification. See parsing rules for more information.

Purpose

Describe what SLSA level an artifact or set of artifacts was verified at and other details about the verification process including what SLSA level the dependencies were verified at.

This allows software consumers to make a decision about the validity of an artifact without needing to have access to all of the attestations about the artifact or all of its transitive dependencies. They can use it to delegate complex policy decisions to some trusted party and then simply trust that party’s decision regarding the artifact.

It also allows software producers to keep the details of their build pipeline confidential while still communicating that some verification has taken place. This might be necessary for legal reasons (keeping a software supplier confidential) or for security reasons (not revealing that an embargoed patch has been included).

Model

A Verification Summary Attestation (VSA) is an attestation that some entity (verifier) verified one or more software artifacts (the subject of an in-toto attestation Statement) by evaluating the artifact and a bundle of attestations against some policy. Users who trust the verifier may assume that the artifacts met the indicated SLSA level without themselves needing to evaluate the artifact or to have access to the attestations the verifier used to make its determination.

The VSA also allows consumers to determine the verified levels of all of an artifact’s transitive dependencies. The verifier does this by either a) verifying the provenance of each non-source dependency listed in the resolvedDependencies of the artifact being verified (recursively) or b) matching the non-source dependency listed in resolvedDependencies (subject.digest == resolvedDependencies.digest and, ideally, vsa.resourceUri == resolvedDependencies.uri) to a VSA for that dependency and using vsa.verifiedLevels and vsa.dependencyLevels. Policy verifiers wishing to establish minimum requirements on dependencies SLSA levels may use vsa.dependencyLevels to do so.

Schema

// Standard attestation fields:
"_type": "https://in-toto.io/Statement/v1",
"subject": [{
  "name": <NAME>,
  "digest": { <digest-in-request> }
}],

// Predicate
"predicateType": "https://slsa.dev/verification_summary/v1",
"predicate": {
  // Required
  "verifier": {
    "id": "<URI>"
  },
  "timeVerified": <TIMESTAMP>,
  "resourceUri": <artifact-URI-in-request>,
  "policy": {
    "uri": "<URI>",
    "digest": { /* DigestSet */ }
  }
  "inputAttestations": [
    {
      "uri": "<URI>",
      "digest": { <digest-of-attestation-data> }
    },
    ...
  ],
  "verificationResult": "<PASSED|FAILED>",
  "verifiedLevels": ["<SlsaResult>"],
  "dependencyLevels": {
    "<SlsaResult>": <Int>,
    "<SlsaResult>": <Int>,
    ...
  },
  "slsaVersion": "<MAJOR>.<MINOR>",
}

Parsing rules

This predicate follows the in-toto attestation parsing rules. Summary:

  • Consumers MUST ignore unrecognized fields.
  • The predicateType URI includes the major version number and will always change whenever there is a backwards incompatible change.
  • Minor version changes are always backwards compatible and “monotonic.” Such changes do not update the predicateType.
  • Producers MAY add extension fields using field names that are URIs.

Fields

NOTE: This subsection describes the fields within predicate. For a description of the other top-level fields, such as subject, see Statement.

verifier object, required

Identifies the entity that performed the verification.

The identity MUST reflect the trust base that consumers care about. How detailed to be is a judgment call.

Consumers MUST accept only specific (signer, verifier) pairs. For example, “GitHub” can sign provenance for the “GitHub Actions” verifier, and “Google” can sign provenance for the “Google Cloud Deploy” verifier, but “GitHub” cannot sign for the “Google Cloud Deploy” verifier.

The field is required, even if it is implicit from the signer, to aid readability and debugging. It is an object to allow additional fields in the future, in case one URI is not sufficient.

verifier.id string (TypeURI), required

URI indicating the verifier’s identity.

timeVerified string (Timestamp), required

Timestamp indicating what time the verification occurred.

resourceUri string (ResourceURI), required

URI that identifies the resource associated with the artifact being verified.

policy object (ResourceDescriptor), required

Describes the policy that the subject was verified against.

The entry MUST contain a uri.

inputAttestations array (ResourceDescriptor), optional

The collection of attestations that were used to perform verification. Conceptually similar to the resolvedDependencies field in SLSA Provenance.

This field MAY be absent if the verifier does not support this feature. If non-empty, this field MUST contain information on all the attestations used to perform verification.

Each entry MUST contain a digest of the attestation and SHOULD contains a uri that can be used to fetch the attestation.

verificationResult string, required

Either “PASSED” or “FAILED” to indicate if the artifact passed or failed the policy verification.

verifiedLevels array (SlsaResult), required

Indicates the highest level of each track verified for the artifact (and not its dependencies), or “FAILED” if policy verification failed.

Users MUST NOT include more than one level per SLSA track. Note that each SLSA level implies all levels below it (e.g. SLSA_BUILD_LEVEL_3 implies SLSA_BUILD_LEVEL_2 and SLSA_BUILD_LEVEL_1), so there is no need to include more than one level per track.

dependencyLevels object, optional

A count of the dependencies at each SLSA level.

Map from SlsaResult to the number of the artifact’s transitive dependencies that were verified at the indicated level. Absence of a given level of SlsaResult MUST be interpreted as reporting 0 dependencies at that level.

Users MUST count each dependency only once per SLSA track, at the highest level verified. For example, if a dependency meets SLSA_BUILD_LEVEL_2, you include it with the count for SLSA_BUILD_LEVEL_2 but not the count for SLSA_BUILD_LEVEL_1.

slsaVersion string, optional

Indicates the version of the SLSA specification that the verifier used, in the form <MAJOR>.<MINOR>. Example: 1.0. If unset, the default is an unspecified minor version of 1.x.

Example

WARNING: This is just for demonstration purposes.

"_type": "https://in-toto.io/Statement/v1",
"subject": [{
  "name": "out/example-1.2.3.tar.gz",
  "digest": {"sha256": "5678..."}
}],

// Predicate
"predicateType": "https://slsa.dev/verification_summary/v1",
"predicate": {
  "verifier": {
    "id": "https://example.com/publication_verifier"
  },
  "timeVerified": "1985-04-12T23:20:50.52Z",
  "resourceUri": "https://example.com/example-1.2.3.tar.gz",
  "policy": {
    "uri": "https://example.com/example_tarball.policy",
    "digest": {"sha256": "1234..."}
  },
  "inputAttestations": [
    {
      "uri": "https://example.com/provenances/example-1.2.3.tar.gz.intoto.jsonl",
      "digest": {"sha256": "abcd..."}
    }
  ],
  "verificationResult": "PASSED",
  "verifiedLevels": ["SLSA_BUILD_LEVEL_3"],
  "dependencyLevels": {
    "SLSA_BUILD_LEVEL_3": 5,
    "SLSA_BUILD_LEVEL_2": 7,
    "SLSA_BUILD_LEVEL_1": 1,
  },
  "slsaVersion": "1.0"
}

SlsaResult (String)

The result of evaluating an artifact (or set of artifacts) against SLSA. SHOULD be one of these values:

  • SLSA_BUILD_LEVEL_0
  • SLSA_BUILD_LEVEL_1
  • SLSA_BUILD_LEVEL_2
  • SLSA_BUILD_LEVEL_3
  • FAILED (Indicates policy evaluation failed)

Note that each SLSA level implies the levels below it. For example, SLSA_BUILD_LEVEL_3 means (SLSA_BUILD_LEVEL_1 + SLSA_BUILD_LEVEL_2 + SLSA_BUILD_LEVEL_3).

Users MAY use custom values here but MUST NOT use custom values starting with SLSA_.

Change history

  • 1:
    • Replaced materials with resolvedDependencies.
    • Relaxed SlsaResult to allow other values.
    • Converted to lowerCamelCase for consistency with SLSA Provenance.
    • Added slsaVersion field.
  • 0.2:
    • Added resource_uri field.
    • Added optional input_attestations field.
  • 0.1: Initial version.
  1. この解決には、パッケージ名に加えて、バージョン番号、ラベル、またはその他のセレクターが含まれる場合がありますが、SLSA にとっては重要ではありません。

  2. Technically this requires the artifact to be known to the adversary. If they only know the digest but not the actual contents, they cannot actually build the artifact without a preimage attack on the digest algorithm. However, even still there are no known concerns where this is a problem.

  3. The externalParameters SHOULD reflect reality. If clients send the evaluated configuration object directly to the build server, record the digest directly in externalParameters. If clients upload the configuration object to a temporary storage location and send that location to the build server, record the location in externalParameters as a URI and record the uri and digest in resolvedDependencies.